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SUMMARY

Supercavitating flows about axisymmetric bodies at zero and small
angles of attack are of wide practical importance., These flows are not
so amenable to theoretical treatment as the plane flows, because the
conformal mapping technique is not available in axisymmetric and three-
dimensional flows. Approximate methods must therefore be adopted for
the free streamline analysis.

In this study an integral equation has been applied to calculate
the free streamline flow behind axisymmetric bodies at zero and small
angles of attack. The problem could be reduced to the solution of the
mixed boundary value problem of potential theory with the additional
condition that a specified velocity shall be attained along the free
streamline,

|. INTRODUCTION

The flow field about a body of revolution is usually determined by
placing singularities along the axis of symmetry. Rankine [1}] was thus
able to calculate families of bodies by distributing point sources of
variable strengths on the axis. This method was later improved by
Taylor [2] and Fuhrmann [3]. Many years later, Weinstein [4] applied
surface singularities to determine the flow fields about obstacles such
as rings, disks, and cylinders. Further contributions to the indirect
problem, in which the source strength is given and the corresponding
body shape is sought, were made by Van Tuyl [5] and Sadowsky and
Sternberg [6].

The direct problem, where the contour of the body is given and the
corresponding strength of the sources is to be determined, was first
solved by von Kdarman [7] with an axial distribution of singularities
for the zero and finite angle-of-attack case. Lotz [8] probably
published the first method using surface singularities; however, before
that, Trefftz [9] had used annular sources to calculate the contraction
coefficient of the vena contracta, TLater, Riegels [10] extended the
method of reference 8 and applied it to bodies of revolution that



deviate slightly from rotational symmetry. All of these methods dealt
with Dirichlet flows that do not permit the calculation of any drag
force.

The Helmholtz flow concept, since it enabled the aerodynamicist to
calculate a drag coefficient, meant an improvement., Over the years, a
tremendous amount of literature on the two-dimensional Helmholtz-flow
has accumulated, The first approximate solution of the axisymmetric
problem was published by Bauer [11], who applied an axial distribution
of sources to determine the drag of a sphere. However, this method is
not well suited, since the flow field is everywhere continuous except
on the axis. Therefore, the proper discontinuities cannot be duplicated
at the separation point of the flow.

Consequently, Armstrong and Dunham [12] applied a surface distribu-
tion and devised an iterative scheme to determine the proper location of
the free streamline. However, results calculated with this method were
never published, The first numerical results for a disk placed normally

to the stream were given by Garabedian [13].

In this report, the method of Riegels [10] is extended to the
Helmholtz-flow concept. The surface of the forebody and the free
streamline are replaced by surface singularities. The location of the
free streamline must be assumed for the first iteration. The final
proper location must be obtained by an iteration that satisfies certain
specified boundary conditions. The problem contains at least one param-
eter for a forebody with fixed separation, probleéme du sillage, the base
pressure Cpp right behind the separation point, which is assumed to be
constant along the remainder of the streamline. However, if the flow
separates from a smooth body, for example, a sphere or ellipsoid, the
problem will have one additional parameter, the separation point Sg,
probléme de la proue. 1In cavitational flow, the base pressure is
approximately equal to the vapor pressure of the liquid, and the pres-
sure is constant throughout the cavity. For wake flow, the base pressure
must be obtained from experimental data, and the assumption that the
pressure is constant along the wake is questionable. Boundary layer
theory can be applied to determine the separation point.

A new linearized model is developed for the lifting body. The
assumption of the Helmholtz-flow is also valid for this model. The
pressure within the separated cavity remains constant, and additional
pressures due to the normal flow are equalized across the circumference
of the cavity, thus causing the local normal force along the cavity to
vanish. The cavity is therefore shifted to an asymmetrical location
to satisfy the no-lift condition.



Il. THE DIFFERENT CAVITY OR WAKE MODELS

Several free streamline models discussed in this chapter will be
compared with the original Helmholtz-Kirchhoff classical model., The four
models are all characterized by the fact that the tangential velocity Vg
along the free streamline is greater than the approach velocity U,.

For the Helmholtz-Kirchhoff model, or infinite cavity model, the
base pressure Cpg is zero, and consequently the calculated drag is less
than the drag observed in experiments, To correct this deficiency,
higher velocities must be permitted on the free streamline, Then, how-
ever, the streamlines curve back to the axis of symmetry, and certain
cavity closure devices must be introduced. Thus, in model 2, the image
or Riabouchinsky model, the free streamline reattaches to an artificial
image of the forebody introduced at the end of the cavity. Only the
drag of the first body is determined. The ultimate wake thickness is
zero. In the third model, the reentrant jet model, the wake or cavity
ends in a free stagnation point from which a reentrant jet projects
forward toward the body base and vanishes there. This is an unreal
feature, though it has some similarity to the often forward-thrown
spray observed in cavities at low pressure. As in the Riabouchinsky
model, there is a stagnation point at the end of the cavity, and the
ultimate wake thickness is slightly negative on account of the fluid
removed in the reentrant jet., One model, sometimes called the dissipa-
tion model or parallel streamline model, probably describes the wake
flow better than the cavity flow. Here, the downstream wake thickness
is not zero. The pressure is initially constant along the streamline,
springing from the disk edges until they reach their maximum wake diam-
eter. From here on, the direction of the velocity vector remains con-
stant; its magnitude, however, decreases until Vp(s) is equal to U,
the velocity of the undisturbed flow. This model was used for most of
the calculated zero-angle-of-attack cases of this report. However, it
was used exclusively for the lifting cases.

One can devise another model with exactly the wake width that is
required to produce the drag force of the forebody. Here the far wake
consists, again, of a parallel stream tube of radius JbD/Z. At some
location downstream of the base of the body, the free streamlines inter-
sect the stream tube forming thus a free stagnation point; therefore,
the constant pressure condition cannot be satisfied over the rearward
part of the free streamline, and other assumptions have to be made there.

The literature abounds with other models which are more or less of
practical usefulness, Originally all models were devised for the plane
case; however, one can apply them to the axisymmetric case without
difficulty.



[11. DISCUSSION OF THE THEORY

The Potential and the Velocities of an Axisymmetric Body

The perturbation potential function of an axisymmetric body
covered with surface singularities of strength q(s,w) = cos (nw)q, (s)
is given by the surface integral of the source strength times the
reciprocal distance between the fixed (x,r,w) and the running point

(&, 0,0"):

SE 27
p cos(nw') dw' dg

cp(swoc)=-'1—ffq(000 '
e W I7% Jos n*"’ [(x-§)2+r2+02'2rp cos(w-w')]l/2

(1.1)

For the case n = 0, the body is covered with source rings of con-
stant circumferential strength, representing the zero angle of attack
case, and for n = 1, the source strength varies with the cosine of
the meridian angle w. This case represents the body placed with its
axis normal to the stream.

In general, the strength of the source rings and the surface of
the body is defined as

q, (s,0,®) = cos (nw) q(s,0).

To integrate the potential function around the body, we rearrange equa-
tion (1.1) and write

°E 21
@, (s,0,0) = - 7= fqn<a,a> . cos (nu') du'do,
o N(x-£)2+@+p)2 o ~N1-k2(l+cos(w'-w))/2
(1.2)
where kZ is the elliptic modulus
410

k2 =
(x-£)2 + (x+p)= °



With the substitution
W o- o= 2% dw' = 2dX, (1.3)

we express the second integral in (1.2) as

2% 7

_ f cos(nw') dw' - szOS[n(2X+OJ)] d¥x (1 4)

3 N1-kZ(1+cos [w' -w])/2 N1-k2 cos2x
o

I
%0

To reduce the elliptic integral to Legendre's form, we use the substi-
tution

cos X = sin ¢, X = arc cos(sin @) = g - o. (1.5)

Reversing the limits -x/2 and n/2 yields finally, for (1.4),

/2

I, =2 {cos (nw) 2f cos {20(/2-9)] 4,
n N1-kZ sinZg

/2
- sin(nw)k/\ sin [2n(n/2-)] dé} .
7P N1-k2 ginZp

With the relations

I

cos [2n(5 - 91 = (-1)7 cos (2n0)

and (1.6)

[

sin [20 - @1 = -(-D" sin(2np),



one can define two integrals. The first one is

/2
F (kZ) = (_1)nf M@L dCP.
2 N1-kZsinZp

The second integral

/2
_(_l)n\/n sin (2nop) dg = 0
(112 <:.2
-2 1-k= sin P

vanishes for all n. The perturbation potential can finally be written
as

S
E
2p F_(k®) do
o (s,w,a) = - L8O [ oo n : 1.7)
n 27 n \/
[e)

(x-€)% + (r+p)®

Partial differentiation of the perturbation potential (1.1) with
respect to x yields the perturbation velocity in the x-direction.

8
a E 25
irl = L q (G Q{) p(X'E) f Cos (nw') d(A)' .
ox by s n [(X'§)2 + (r+p)2]3/2 S [1-k2(1+cos(w’-w))/2]3/2

(1.8)

With the aid of the substitutions (1.3) and (1.5), we can write for
the second integral on the right-hand side of (1.8)

27 /2

=u/\ cos (nw') du' - cos(nw)(-l)nk/n cos (2no) do
[1-k2 (1+cos (w' -w))/2]13/2 [1-kZsinZp]®/2

I@X

(equation continued on next page)



/2

+ sin(nw)(-l)nk/n sin(2ng) do )
qya [17KZ sinpl®/®

We define now the first integral on the right-hand side as

/2

C (K2) = (-1 IIJF cos (2ngp) do . 1.9
L&3) = (1) e s (1.9

The second integral on the right-hand side

/2
-1y" b/“ _sin (209) 44 - ¢ (1.10)
Ly [1KZ sinfele/?

vanishes for all n, ;

The perturbation velocity component in the x-direction is now

E
O 1 1 (s, 2p(x-8) G, (k%)

[(xw-E)2 + (r+p)213/2

do.

Partial differentiation of equation (1.1) with respect to the radius r
yields the perturbation velocity component in this direction.

n_ L q_(o,0) - —E
dr b n -’ [(x-£)2 + (r+p)2]3/2

dw' do.

.b/‘ r cos(nw') - p cos(w' -w) cos(nw')
[1 - k2(1 + cos(w' -w))/2]3/2



The second integral on the right-hand side, together with substitution
(1.3), yields

18

7
I = 2rk/q cos (2nX + nw) ax - zpk/pcos (2X) cos (2nX + nw) dx. (1.11)
Pr [1-k2 cos®x]3/2 [1 - k2 cos2x]3/2

The numerator of the second integral can be written as

cos (2X) cos (2nX + nw) = cos (nw) [cos {2(n-1)X} + cos {2(n + 1)X}]

- sin (nw) [sin {2(n + 1)X} + sin {2(n-1)X]}].

(1.12)

With the definition (1.9) and the substitution (1.5), the first integral
on the right-hand side of (1.11) becomes

1T

2 cos (nw) Gy (k2) =b/ﬁ cos {2nX + nw}

[1-k2 coszx]a/z

dax,

and the second integral is

7T

s
k/pcos (2nX + nw) cos (2X) dX = cos énwlu/\ cos[2(n-1)X]+cos[2 (nt+l1)X] ax
(1'k2 cosch)a 2 5 1+ ¥© coszx)3/2

o]

T
_ sin (nw) U/‘sin[z(n+1)x]jsin[2(n-1)x] dx
2 S [l+k2coszx]3/2

/2 _
_ 2 cos(nw)L/ﬁ(—l)n lcos[2(n—1)cp]+(-l)n+lcos[2(n+l)(pl do = (continued on
2 : [1-k2 sinz@]a/z next page)




2 2
G,. &3 + 6, &)
2

= 2 cos(nw)

The integral with the factor sin (nw) vanishes for all n according to
definition (1.10). The perturbation velocity component finally becomes

g
20 cos {(nw)
[(x-£)2 + (r+p)2]1%/2

1
S - 2q [ 4(0:®

o

{an(kZ) - 2 [Gn_l(k2)+Gn+l(k2)]}dcr.

The perturbation velocity component in circumferential direction w is
obtained by partial differentiation with respect to w and multiplication
with the factor 1/r:

a(p E 2x
r [x-£)2+(r+p) 212/ 2 I [1-kE(L+cos (u' -w))/2]%/2

(1.13)
We apply (1.3) to the second integral in (1.13) and write
25 Tt
1 . v _ 1 .
I, =\]P cos (nw') sin(w'-w) dw' _ zk/hcgs(ZﬂX+nw) sin 2X dx. (1.14)
w [1-k2(Ll+cos (o' -w))/2]3/ 2 [1-k2 cos2x]3/2

o o]

Using substitution (1.15) in equation (1.14) produces

n/2
-2 sin(nw) L/“ (-1 cos (2[n-110)= (-1) " eos 2 (@1Q) 4

2 (1 - k2 sinZg)3/2

(o]

= gsin(nw) [Gn_l(kz) - G, &)1



The integral with the factor cos (nw) vanishes according to (1.10) and
finally the w-perturbation velocity component becomes

.SE

.B_CPE - L 4(0.,0) p? sin (nw) <Gn_l(k'2) - Gn+l(k2)>
row 2% . > [(x-£)2 + (r+p)2]3/2 2 .

For zero angle of attack with n = 0, we obtain from definition (1.9)

the relation G_l(k2) = G+l(k2). Therefore, Op,/row equals zero for this
case. The complete elliptic integrals Fn(k2) and Gn(kz) will be developed
in appendix A.

The derived perturbation velocities u, v, and w are the velocities
for fixed points (x,r,w) which do not coincide with the surface on which
the sources are placed. The general solution of the problem, however,
requires that we know the normal or tangential velocities on the bound-
aries of the outer flow field. Part of the boundary is provided by the
surface of the body. A closer investigation of the normal component of
the velocity on the body surface reveals a discontinuity [14). The
jump in the velocity across the surface is exactly equal to the source
strength, +q(s,x)/2 to the outer flow field,and -q(s,x)/2 to the inner
flow field. The tangential velocity component, on the other hand, is
continuous. In this respect, we have to account for this discontinuity
by adding the proper component to the various perturbation velocities

on the body surface.

We obtain for the axisymmetric flow, n = O,

S

a ()T () po 20(x-E) € (kD)
uo(s) = - + P qo(d) do, (1.15)
S [(x-£) + (r+p)®1°/2
and
°E
q,(s)x' (s) 20[xG (k%) - PG1(k2)]
vo(s) = + P qo(o) do. (1.16)

s [(x-£)2 + (r+p)Z]2/2

10



The perturbation velocity components for the angle of attack case (n = 1)
are

s

u,(s,0) q,(s,)r’ 1 fE 0.0 20(x-£) G,(k®)
— = - ——— 4 = [ q.(0, : do, (1.17)
@ cos w 2 2 T [(-£)2 + (r+0)2]3/2 ‘

S
v,(s,0)  q s,x' | A 20[tG1 (kD) - 2 (G, (K®) + (k)]
a cos o 2 * o k/“ql(c,a) e ' do

S [(x-£)2 + (r+p)®]12/2

(1.18)
and
°E

w_(s,0) 1 f zpz[co(k2) - Go(k®)1/2
2 _-L [ - (1.19)
o(cos w) 21 . 1 [(x-£)2 + (r+p)2]3/2

The notations r'(s) and x'(s) are differentiations with respect to the
arc length s. For k® = 1, the elliptic integrals have a pole with a
logarithmic discontinuity. Therefore, the finite part of the integrals
of equations (1.15) through (1.19) have to be taken,.

The total potential of the body is obtained by superimposing the
perturbation potential on the potential of the undisturbed flow field.

Qﬁ(s,w,oo = x(s) cos ¢ + r(s) sin ¢ cos w + @n(s,w,a). (1.20)

From the boundary condition

3%, (s, 0,0)
— oy, -0, (1.21)

11



we obtain the source strength on the surface of the body. We differentiate
(1.20) with respect to the normal

o, (s, w,0)

agn(s:w:a) _ Bx(s)
ov )

ov ov

r (s .
cos O + §§é—l sin ¢/ cos w +

With the equations of appendix C, we can write now

V. =0=-r"(s) cos @ + x'"(s) sin @ cos w - un(s,a) r'(s) + vn(s,a) x' (s)
(1.22)

where uj(s,) and Vn(S,OD are the perturbation velocities of equations
(1.15) to (1.18). The first two terms on the right-hand side of the
equation are the velocities of the undisturbed flow field.

Let us consider first the axially symmetric flow field with n = O,
o = 0. The normal component of the parallel flow is independent of the

meridian angle w:

]

go(s,a) r'(s) cos o = r'(s). (1.23)

The normal component sin ¢ of the parallel flow is préportional to cos w:
g.(s,0,w) = -sin o cos w x'(s) =~ =x'(s) o cos w. (1.24)
In the future, we will mostly use the linearized form of the boundary
conditions., Only once in a while we will refer to the exact expressions,.
We obtain the integral equation for determining the source strength
on the surface of the body by replacing in (1.22) the terms u,(s,X) and
va(s,0) by their respective expressions (1.15) through (1.18):

s
E

q, (s, = 2g (s,0) +'%; L/qu(c’a) Kq(s,0) dao, (1.25)

o]
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where the Kernel function depends only on the geometry of the body

_ -2p
[ (x-£)2+(x+p)2]3/ 2

Ky (s,0) = {[rx' - G-£)r'] G (k)

- %i ©,_, &) + Gn+l(k2))} : (1.26)

The source strength qp(s,x) is the only unknown of the integral equa-
tion (1.25); all other functions are known, The elliptic integrals of
(1.26) have a pole at k2 = 1, The singularity, however, has logarithmic
character, and the quadratic integrability for solving (1.25) exists,
Special procedures must be applied to solve the integral equation numer-
ically. Equation (1.25), a linear integral equation of the second kind,
shows the dependency of the source strength q on the angle of attack ¢
and the shape of the contour of the body. 1If we set n = 0, we are con-
sidering the axisymmetric flow field, and we replace q,(s,x) by the
linearized form of (1.23). The source strength is then not dependent
on . However, for the angle of attack case with n = 1, we use (1,24)
and we notice that q,(s,x) = aq,(s).

Asymptotic Development of the Velocity Components

The integrands of the integral expression for the velocity components
are now developed into a power series of small € = g - s:

r+r'e+1r"e?2 + ...

fo
1

x +x'e +x"e®/2 + ...,

v
[}

where primed values represent derivatives with respect to the arc length
s. To solve the integrals numerically, the following procedure is used
which shall be demonstrated as an example with the u-component. We
repeat equation (1.15) for n = O:

°E

q _(s)x'
u (s) = - —0'2—— + ZL fqo(c) - 28 (x-£) G (k%) do.
° n [(x-£)2 + (x+p)213/2

o]
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The integrand has a singularity at x = £, However, the value of the
integral is finite if the principal value of the integral is taken,

To avoid the singularity, the series approximation of the integrand
containing the constant term free of ¢ is subtracted from the integrand,
Then the expression under the integral sign is zero at the singular
point s = g, and the integral can be treated numerically. By designat-
ing the approximating series as f(s,0) one obtains, for the u,-component:

SE S
q,(s)r’ 1 1 £
uo(s) =-— 5 + P L/ﬂ[qo(c) K(s,0) - f£(s,0)] do + P u/\f(s,c) do.
o] o

(2.1)

The first integral on the right-hand side is now free of any singularity,
and can be solved numerically. The second integral contains the singu-
larity and it can be treated analytically. The principal value of the
integral must be used. This is the general procedure which is applied to
all integrals as long as they are singular,

Continuing now with the general development, one obtains, after some
algebra, the series f(s,¢) for the potential ¢

_fQ(S’G) = —qn(s,a) [ln T;%ET - ZnJ + ...

The integration of this function yields

8
E

q (S’OO ]
1 . - 8r - Elra-
- 5 f@(s,o) do = 7 [SE 1n TETET + s 1n |1 S ]+(1 2n)sE] + ...

o]

where n = 0, 1, respectively.

For the velocity components, the respective functions are

x' x'r'+rx"

£,(s,0) = -q,(s,) [0 —= T o ] -q) (s,a)x" + ...

14



£,(5,9) = -qy(5,0) [G—s - 27 (In o5aT - <1+2n>> Al ”"] -q! (s, 0"

_n 8r
fw(s,o) =7 qn(s,a) ‘:1n _l_STCIT 2] + ...,

and integration again yields

s

E q_(s,) s
1 n’ E x'r' + rx"
£ = - 2 - 1 J % Xxr =TIrIX
P (s o) do o [x 1n |1 - + oy SE:I
o
(s,)
- 1
2% ¥ g *o...
SE
1 _ qn(S o) . E r'” + "
thL/jf(scr)do—- o 1n|l-—|+ 2r g
o
s T
- _1_ 8r - _E - 1] !
e <SE 1n . + s 1In |1 5 2n sE)J - qn(s,oz)r sE/Zﬁ + ...
s
E
1 q (S>a) 8t SE
7 f (s,0) do =n e [SE 1n Tg-:—;;T +s 1ln |1 - < SE] + .
o

The function £(s,g) and the respective integral for determining the
strength of the source distribution (1.25) are

fq(s,c) = qn(s,a) [x' in -|—:f—0-l- - (1+2n)> - rK:| /2r + ...
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Sg

1 q (s a) 8r SE
;ffq(s,d) do = ————— l: < W-'-Sln [l-'—s—l—ZnsE>

o]
- rKsE]-F...,

where K is the curvature of the contour or the free streamline

For acute cone apex angles, the above series expansion is not very well
suited. For this case, a special expansion which is only applicable to
small cone angles is given in appendix B.

With the above series expansion, we can finally write the complete
perturbation potential for arbitrary meridian angles w

Pple,0:0) f 20 F_ (k2) 1 , }
cos (nw)  In {qn(G,Ol) N (x-E)2 + (r+p)2 " (.00 (In T_f i n> 90
(o]

S

n(S @) 8r E
- = \:SE 1n T;S—ET+ s In |1 - ?l + (1-2n) sEJ. (2.2)

The velocity components become

S
u (s,0,0)  q (s,a)r' | f 20(x-£) G, (K?)
cos (nw) =T 2 + 25 k/ﬁ {én(g’a) > 2 >
[ (- £) 2+ (r+0) 212/

] 1ot "
+q (s,0) |Z + % rzjrx ] +q' (s,Ot)X'} do

| g-s
q_(s,0) [ s V..t " CI'(S,O‘)
n*"? ' __E X' r +rx _.n '
— Lx In |1 - = | + — SE} —5— ®'sp, (2.3)
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S
E
va(s,0,0)  q_(s,0) . f{ 20 <
- v L (0,0 - -2 Gy (k2
cos () & T S AN

- Ep [Gn-l(kz) * 6 (&3 ]> + qn(s,Ot) |:]c;-'-_s h % <1n _Ig-Lsr B (1+2n)>

2 n q_(s,x) s 12, i
+ | ' 1)
FR S S err :‘ + qn(s,a)r }dc - —_— nzﬂ l:r 1n |1 - TEI I S Sl Z;rr Sp
L q (s,
_-— -I-;S—l—+slnll-—l-2ns>:‘-~—2ﬂ—sEr
(2.4)
and
W(S w, X 20 P 2y =
sin (nw) f {q 0.2 [ (x-£)2+(r+p)2]3/2 2 o2 656y, (59)
(s,) 8r
(soz) ln >}do+naﬂr—{: ln-|—s—_?r
°E
+ s 1ln |1 - S—I - SEJ . (2.5)
The integral equation (1.25) becomes now
28, (s, ,0) f 2 o i
cos (oo 9n (s,a) + {q (o,) PER—— l:(rx -r (x-g))Gn(k )

(equation continued on next page)
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! q (Saa)
- p% € k3 + Gn+l(k2))] - HT [x' <1n 12_%1- - (l+2n)>

n-1i

(S @) 8r SE
- rKJ}-dc + — [ <' T;j;gT +s ln |1 - ??' - 2n SE>

(2.6)

_—

-

In this report, we very often refer to the normal and tangential veloc-
which are quoted here for n = 0 and n = 1

ities of the body surface,
separately. According to the equations (C.1) and (C.2) of appendix C
we obtain for the normal velocity of the body in axial flow

a &), [ (rx' -r' (x-£))C (%) -x" 061 (%)
+ 5= d[\ 20q (o) z 573/ 2
2t ox 0 [G-8) P+ (+0) T3/
(o}

VN(S) = -r' +

q_(s)
- 02r <X' 1n -]—0’?—:1- - x' - I'K)} do

q (s) 1 S Ks
+ ;QEE— [%; <%E ln Tg%%gT +s 1n |1 - E?+> - _EE] . (2.7)
The tangential velocity for this case is given as
1 © (x' (x-E)4rr' )G (3)-pr' Gy (k®)
V. (s) = x' + — ;/\ {?pq o —
' T o ° [ (x-£)2+(r+p)2]%/ 2
1 q,(s)
+ a, (s) { <} - 1In T———t)] -q (s)}-dc - -ﬁ: -
r's q (S)s
(2.8)

= (- i) 2

£
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The corresponding velocities for the body at an angle of attack o
are, according to (C.17) and C.18) for the meridian angle w = o,

°g

o) max + G L [

o

{qu (o o) [(zx'-r' (x-£))6 (k%) - x p(G (k®)4+G (k%)) /2]

[(x-6)2 + (x+p)21%/2

8r

q
- -1 - ! - f _
T <x 1n —Tl s 3x rK>} do
ql(s, ) X 8r SE KSE
P — |2 ' - =Bl -9 ) - — :
2x [Zr °E In ls-sE s In ll s SE> 2 } (2:9)
and

]
' (X-§)+rr )G, (k3)-pr' (G, (k)46 (1<‘2))/2

1
V., (s,q) =ar' + 5= f {ZDC[ (o, 0) —-
o 2 " (-5 + (r+0)2]/2

+ q.(s,Q) [ s <4 - 1n -l-c—-s—l- jl + q'l(s,Oé)} do

q,(s,) s So r's, ar
L _rs _-E 4 3-1
27 {( 2r > In |1 s 2r n ‘s-sE

', (s,M)sp
2n °

(2.10)
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The Solution of the Integral Equation

We replace the integral equation (2.6) by a system of N-linear
equations and solve this system for the N-unknown q,. From now on,
we reserve the index v for the fixed point s on the contour and the
free streamline (which is here considered a fixed surface, too) and
the index u for the running point ¢. For the numerical integration
scheme, we use the quadrature procedure of Gauss, where the value of
the function at certain prescribed abscissas s, is multiplied with a
certain weight A,. We call A, = Alpa, the modified weight, It is
obtained by multiplying the original weight a, which is normalized to
1, with the sectional length ALy as shown in figure 1. The total
length of the body is therefore given as

N M P
°E =Z Au =Z ! Zau’
]-l=l m=1 FL=1

where the number of body sections is designated by M and P is the number
of points in one segment., This number does not change. It is the same
for all segments. The total number of points is therefore given by

N=M-P,

After replacing in equation (2,6) the integral sign with the sum-
mation sign and collecting all terms multiplied with q,, we now obtain

2(g.) 8y .
n’v. 1 ' , 5
cos (nw) (qn)v [1 + > {%v 1n S + s, ln |1 - 2nsE>
v E
B 8r
- - 1 v _ _
erst ;z [x In TE;:E_T (1+2n)> rva] AM}]
=l M
N, - _ 2\ ' . i
) lz (q,) oy Oy 8 ) ruxv(Gn-l(kvu)fGn+1(kv_u))/2A
T n i

[xv-xu)z + (rv+ru)2]3/2 b

(3.1)
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The primed summation sign means that the term p = v is omitted in the
summation process, since £, was originally defined as the series
expansion of the Kernel function K,, at the singular point. The
inclusion of the constant term in this expansion insures that the two
terms under the summation signs cancel each other at the point p = v.

In equation (3,1) the source strength q, is the unknown. The left-
hand side of the equation is known and is substituted by either equa-

tions (1.23) or (1.24) depending onn = 0 or n = 1, 1In matrix notation
we write the N-linear equation as

a11 @12 .. A&y qn;w 2(g,) 4
3.21 3.22 P aZN qn2 z(gn)2

= . (3.2)
o R = 1 quJ 2 (gn)l\ﬂ

The elements of the main-diagonal are given by the expression

1 8rv Sg
_ ' - —=| - -
ay, 1 + 2ﬁrv [XV <%E in TE;TEET + s, In ‘1 s ‘ 2ns€> KVrVSE}

(k2 ))/2
a =2r ~-—- 0 WO AT R T ot Vi A .

v M _ m
al (x,, xM)Z + (rv+ru)2]3/2
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The matrix is usually conditioned satisfactorily [15)]. The elements
of the principal diagonal ay, are larger by one magnitude than the
elements ay, of the neighboring diagonals, The solution function qy
is usually very smooth. For one particular example of calculation,
the value of the determinant was det A = 53,4, The conditioning
number of the system had a value of Ky = 2.7 x 10-*%, The number of
points used to calculate the flow field was N = 64. The determinant,
as well as the conditioning number, depends on N. With decreasing N,
the conditioning of the system usually improves, provided the deter-
minant is different from zero. )

After having solved the system of equations for the source strength
q,, one obtains the velocity components by a simple quadrature:

(u)), (a,), 1 i'[ 2Ty (x =x )G, (k2 )
—_—= - rl + o= (ay)
cos (nw) 2 v 2 = 3! [(x -x )2+(r +r ) ]8/2
X rv+rvx
+ (qn)v'{ er }-+ (qn)vva Au
(qn)v Sp x'r'+r x" (q;)v '
- == [xv In |1 - s, + A ;rv" . sE:l - xS, (3.3)
SANICON ”’Li' " 2x [r G, (k5 ) (6 (5 )46, (k5,))/2]
cos(nw) 2 Vv 2m o [(x -x )2 + (x +r )Z]3/2
p=1 v TR Vo
r; 1 8r +r VEY
+(q,) Lsu—sv gy In Téu'svl - (1+2n)> ]

(al) (q.) s r! S4r
4+ 2 L A - a Y r' 1n ll - —El + X Vv s
o v s, 2rv E

s (q,)
- By R A
< -[—T 1n l Sv} 2nsE>} 5. 5,5E
22 (3.4)



and

sin(nw) s )

®ndy 1 Zl{m) £ Cnng 0 ) Oy 5 )
L AR A

8r
n v
T, (a,), [1n [SH-Svl -2 AH G-3)

(a.) [ 8r s
n’v \4 E
+ n s_ 1n + s, 1In |1 - —| - s J.
anv E lsv—sE v SV| E

This is the usual procedure to solve the flow field about a body of
revolution with a fixed contour. So far, the wake or cavitation bubble
has not been mentioned specifically. However, for the solution of the
wake problem, which will be discussed in the following chapter, a solu-
tion qy, of (3.2) is necessary and will be used to calculate the perturba-
tion potential and the tangential velocity,.

The Axisymmetric Cavity

Following Helmholtz's suggestion, the free streamline discontinuity
surface is taken as an idealization of the separation surface which
divides the main flow from the wake or cavity which follows separation.
The thickness of the sheet is taken vanishingly small, and the flow on
one side is assumed to have no effect on the other except through the
pressure. For cavitating flows with ratios of cavity density vanish-
ingly small, the flow in the cavity is assumed as quiescent, and it is
therefore a constant pressure region.

The problem to find solutions to the discontinuous flow about
bodies of revolution with a smooth contour has two parameters. These
are the separation point sp and the cavity pressure coefficient Cpg. 1In
order to explain the general method of solution in principle, we cal-~
culate the flow about a body where the flow separates abruptly at the
corner of the base. The problem then has only one parameter which is the
cavity pressure coefficient Cpp or the equivalent tangential velocity VTB'
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These prescribed parameters are constant along the free streamline T[>
in accordance with the assumption that the flow in the cavity is
quiescent. For small velocities in the cavity, Cpg and Vg are func-
tions of the arc length s, For the discussion of the general theory,
we assume a constant Vrpg and we adopt the infinite cavity concept,
which is the Helmholtz model (Vpg = 1). Special changes of the general
method of solution if other models are applied will be described at the

end of this chapter.

In particular, we assume the flow to be (1) inviscid, (2) gravity-
less, and (3) steady. Figure la represents the upper half-plane of
a body of revolution and the corresponding cavity, According to our
assumptions, the body possesses a sharp corner at sp where the flow
separates abruptly. Otherwise, the contour ['5; of the body is smooth
except at the stagnation point, The cavity is separated from the
outer flow field by the free streamline I',. On_the given contour
I'y, the absolute value of the velocity vector ,V (s)| is unknown; its
direction, however, is known with condition (1. 2% Downs tream of s
the absolute value of the tangential velocity vector |VTB‘ is specified
on I's; its direction, however, is unknown. With the specified velocity
Vpg on I's, the velocity potential is also known on ['5 except for a
constant, The position of [ is therefore not known and we have to
choose it arbitrarily on some reasonable basis (see Fig. 1lb). We

designate this line PZ.

Tt is our goal to determine the position of ['>. For the solution
of the problem, we formulate that:

(2) The boundary condition Vy(s) = 0 has to be satisfied on
Ti.

(b) On the arbitrary line [%, the velocity and therefore
also the potential except for a constant is known.

(¢) If 'S5 is not identical with the free streamline I,
the normal veloc1ty (VN(s) # 0) does not vanish on [%
and therefore P2 is not a streamline,

(d) From the magnitude of Vy(s) on %, we can deduce the
shift of the line rI%. The solution of the problem is

therefore obtained by iteration.

(e) Since the position of the free streamline is not known,
we have to conduct all numerical calculations on the
arbitrary line F;.
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Besides the velocity Vg, we mentioned also the potential Fyp(s)
in (b). Later on, we will employ this potential function rather than

the velocity Vrg. The reason for this choice will be given later in
this report.

(1) The Solution of the Problem by Specifying the
Potential Function

As a next step, we establish the set of integral equations with
which we determine the source strength qo(s). On the contour [';, we
satisfy' Vy(s) = 0 and obtain therefore

°g

@ =2+ [ q @K 0 a0 4.1)

(o]

where the Kernel function K_(s,g) is given for n = 0 by equation (1.26).
For points within the region PZ, we obtain the integral equation

E
%* N
p(s) - ¥ () = - &= f 16(0) K (3,0) do (4.2)
o
with the Kernel function
2
2pF (k%)

K (s,0) = .
? VG- ) 2 (re4p) 2

With known potential @p(s), equation (4.2) is an integral equation of
the first kind. 1In both equations (4.1) and (4.2), the source strength
qo(s) is the only unknown function. The Kernel functions Kq(s,c) and
(s,0) depend only on the geometry of the body contour ['; and the
arbitrary line Fz. The integration limits are the stagnation point
(s = 0) and the point where the wake is truncated. About the choice of
the point sy and the influence of the truncated part of the "infinite"
cavity or wake, some explanation will be given at a later time.
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On the left-hand side of equation (4.2), we recognize the
total potential of the free streamline ['5; which is defined as

S

goB(s) = goB(sB) + L/\VTB ds, 4.3

B

where only the value of the integral is known. The value of the poten-
tial at the separation point sg is a constant and unknown,

Zpsg) = C.

The two terms on the left side of equation (4.2) would represent the
perturbation potential of the body with the exact free streamline ['»

if x*(s) would have been the abscissa of I's. Since, however, x*(s)
belongs to the arbitrary line Fg, the term (Zhp(s) - x*(s)) is only
approximately @og(s), except at the separation point where x*(s) = x(s).
For a convergent procedure, however, where ', = I's, the left-hand side
becomes, after a sufficient number of iterations, identical with ¢op(8).

We define there

9 p(s) = B z(s) - ¥ (s) = g (s) + C. (4.4)

The barred expression

s

Py () =fvTB ds - x"(s) (4.5)

Sp

represents all known functions. The subscript B refers here to quantities
compatible with the specified pressure coefficient Cpg.

The perturbation potential ¢,p(s) can also be represented by
the function @g(s) plus some corrective term which will approach 0 as
'Y - I's. We obtain @g(s) by solving the system (3.2) for qg(s) and
insertion of this function into equation (2.2), where we set n = 0, for
the axisymmetric flow case, Since the system (3.2) was obtained with the
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boundary condition Vy(s) = O along I'y and FZ , the line % is temporarily
a streamline. All functions obtained with qg(s) of the system (3.2)

will in the future be marked by asterisks, in order to distinguish them
from those obtained with the solution q,(s) of the system of integral

equations (4.1) and (4.2). We add and subtract in equation (4.3) the
terms |

S
Fi(sp) and fva‘(s) ds
°p
and obtain
S .S
Zg(s) = [QfoB(sP) - @’g“(sBﬂ + [W;(SB) -fv‘@(s) ds} +f(vTB—V§<s)> ds.
S S
B B

Due to the definition (1.20) of Qi(s), the terms

S

Qﬁ(SB) +1/AV¥(S) ds = @2(8) = x*(s) + gr(s)

5p

can be collected, and we obtain instead of equation (4.4) now

S
c%B(S) = ﬁz(s) _ x*(S) + \/“(VTB_Vg(S)) ds + C = @o(s) +C, (4.6)

B
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where the constant is given as
C = [fgp(sy) - Fp(spl. 4.7)

The barred function in equation (4.4) can be expressed with @i(s) =

Z5(s) - x*(s) as

S
9o (s) = g} (s) +f<vTB - Vp(s)) ds. (4.8)

°B

All terms on the right-hand side are known quantities. We insert equa-
tion (4.6) into the 1ntegra1 equation (4.2). Since ggyp(s) is not neces-
sarily identical with @ (s), the normal velocities on [% are not zero
(Vy(s) # 0), and [* is not a streamline any more. OQOur goal is to shift
% in such a fashlon that (a) the condition of zero normal velocity along
Fz is satisfied (P2 — I's) and (b) the specified perturbation potential
@oB(s) is attained along 1"’c

The representation of the exact perturbation potential as a
correction of the approximate wg(s) has certain advantages for the
numerical calculation. The advantages will be discussed at the end
of this chaper in more detail.

The problem still has one unknown quantity: the constant C,
as given by equation (4.7). We must therefore later establish an equa-
tion for calculating C; only then the problem is completely determined.
The constant C is for the time being arbitrarily assumed to be unity.
However, since the geometric functions of [% are introduced into the
Kernel functions of the integral equations (4.1) and (4.2) the exact
free streamline F2 can only be obtained by an iteration procedure,

The system of integral equations (4.1) and (4.2) will now be
satisfied in N points along the contour [I'; and the line Fg. For this
purpose, we replace the integral sign by a summation sign and apply the
Gaussian quadrature, For simplicity, we drop the asterisks for the
geometric functions of the line [” but we keep in mind that x(s), r(s),
and their higher derivatives belong to the assumed line Fg Occasionally,
we will return to the use of asterisks if it seems necessary to the
understanding of the problem,
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For the points 1 £ v = i on the contour I's, we obtain the equation

N
(a,) ! 8r
v o’v _ 1 1 v _ _
r, > [1 - ;z {%v <}n [s -s l> rva}Au
v =1 oV

1 { 8rv Sg
+ x' <% 1n +s,1ln |l -—| -1 «s }]
2ﬁrv v U E sv—sEI v sy vV E

2 (qOLLf_u[_(ivx;/_-r;/_(.x v (kiu)_rux;/Gl(kiu) ]

[>7=

1
+ 5 AL (49

= [Gx,=x )2 + (rv+ru)2]3/2

The point i is the last point on the body contour [, immediately upstream

of the separation point sp. The numbering system of the points v is
explained in Figure 1.

For the points j £ v < N on the line PZ, we obtain the equation:

(q4) N 8r 8r
@), + 1= zﬂv[ In e T A, - %5 1P Te e
Y =1 nov b v E
Nl
s 2r F (k. )A
+ svln 1 - ;EI + SE}] —-%;EZ (qo)u _”H_Z Yoo vy
v u=1 [(XV-XM) + (rv+rp) ]

(4.10)

where j is the point on Fé immediately downstream of the separation
point sg.

Equations (4.9) and (4.10) replace now equations (4.1) and
(4.2), and form a system of N linear algebraic equations whose solu-
tion is the source strength qo(s) along I'; and Fé. The equations are
in matrix form:

29



do1t Adoz

411 2d12 . 4N
811 %42 o iN
aJl aj2 .o aJN
N1 an2 aN%

- - - . (4.11)

The coefficients of the matrix are calculated by the expres-

sions:
a = [l +
vy
ii
u=l

for the region 1 = v £ 1,

r (r x -r! L (x mx ))G (k2 ) T

8rv sE
1n W + Svln 1 - a |> -rvasE

BTG S

'G k2
5

a

= &
Vi /2

[(xv-xu)2 + (rv+ru) ]3/2

for the region 1 = v = i and v # y,

)

1 N 8rv 8rv g s
a ., = EE‘:;Z 1In TE;?EZT AH - sEln TE;:EET + svln 1 - §;| + SE)]
u=l

for the region j = v = N and
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A r F (k2)

a = - & MO vu

YU 4 _ 2 4 + 2y1/2
[Ge,mx )2 + (x jtr )7

IA

for the region j = v = N and v # ..

An estimation of the magnitude of the elements of the matrix
shows that the elements increase in size toward the main diagonal.
Also, the sign of the elements is the same on either side of the main
diagonal. The elements ayy on I'; and Pﬁ are essentially represented
by 1n(8rvlsv-su|). We remember that the integrals possess a logarithmic
singularity. The elements of the main diagonal are determined by the
finite part of the singular integral. 1In calculated examples, the main
diagonal elements were greater than the neighboring ayy, by at least a
magnitude,

The right sides of the system of equations are formed now.
According to equations (4.1), (4.2) and (4.4), we obtain

1A
<
IIA
-

b = 2r; for the region 1

and

IIA
<
IA
z

b, = Py for the region j

The solution of the system with these right sides yields E;;_
The solution qg(s) usually jumps at the separation point. However, if
qo(s) is also the solution of the system (3.2), then the source strength
qo(s) behaves like r'(s) at this point; r'(s) has in sy a corner for the
abrupt and a contact point of first order for the smooth separation.

If the source strength qg, is inserted into the equation for
the tangential velocity, VT, on I* is not necessarily equal to Vyg. We
have to add an additional source strength Aqqy, which is multiplied with
a constant C to obtain Vrg on I's. We do not know yet the constant C of
the perturbation potential; therefore, we set in (4.11) C = 1 along the
line I's, and on the body contour I';, the constant is C = 0, since the
normal velocities shall still vanish there,.

The right sides of the system (4.1l) are now, with the same
elements ayy, given as :

bv =0 for the region 1 = v = i
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and

b =1 for the region j = v = N,
We solve this system for the additional source strength Aq,,. This
source strength refers to the constant C = 1 and always possesses a

jump at sg, since the right sides have a jump there.

For an arbitrary constant C, we obtain the complete solution
of the system of equations (4.11), therefore, as

oy = Yoy + CAqu. (4.12)

Before we discuss the determination of the constant C, we want to list
the quadratures for the tangential and normal velocities., Gauss quad-
rature procedure is applied to equations (2.,7) and (2.8), and we obtain
two expressions which contain the derivative of the source strength

qév = (dqo(s)/ds) and which can be combined:

N
(q;)v-{EzAu - SE}-= -(a) A (4.13)
u’-‘—l

The tangential velocity is thus given as

(a')
= x! 9oV
VTV_XV- 27 Av I:Z{

G _SZZV)m 1B e )

v

<2 S Ws—-s—O}

Y v kL .
: 4,14
A, (4.14)

(x'[x -x ]+rer)Go(kiu)—rurL(Gl(kip)
(qO W

= [Ge,7x )2 + (xv+xu)2]3/2
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The normal ﬁelocity is given with equation (2.7) as

1 (r rv-r (x -x ))G (k2 ) T T Gl(k2 )
+ 2% 2rp(q0) - 2 3/2 AH.
=1 [(Xv—xu) + (rv+ru) 1

(4.15)

We now turn to the determination of the constant C of equations (4.4)
or (4.12),

We prescribe on I['f in v = j the tangential velocity to be
equal to the given Vrp. one. Since we have already corrected the
perturbation potential of Fg to that of the exact free streamline and
obtained the correspondlng qo(8), we expect the tangential velocity
along the entire length P to be equal to Vgpp.

The complete solution (4.12) is inserted into equation (4.14),
and we solve for the constant C.

ICY @5, 1 o
Vg ~ xh - —lzﬁ Fi+ —— i T ox Z 9500 KvT(u,J)A
. M=1
C= ,  (4.16)
(&g ), (Aq ).
—2%'1 Fi A + 5= Z (Aq KVT(M’j) Au

=1
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where the function F, is given as

Noo r! 8r
_ 1 - -
Fa "Z {s ot (2o Isu—sVO} Au
= i
s.r' s r's 8r,
- - - E 42 E (1 -
2r. s 2r . s.-8
> ] v j 3 E

and the Kernel KVT(H’j) is

2r {(xﬁ(xj-xu)+r

" r')G (kZ.).-r rt@l(kzj)]

J 3770 pi’d pj b
[(xu-xj)2 + (rufrj)2]3/2

KVT(H’j) =

The differentiation of the source strength will be discussed later on
in greater detail. The function /g, changes rapidly on " in the
neighborhood of sg. It is therefore difficult to obtain the derivative
(Aqé)j sufficiently accurate. We encounter these difficulties always,
during the first integration steps where C is relatively large. 1In
this case, we use C as obtained by (4.16) as the zeroth approximation
for determining C by the regula falsi with equation (4.14),

" After the constant C has been determined, we insert (4.12)
into equation (4.15) and calculate the normal velocity component Vy(s)

atanta
.

on IZ and improve the coordinates of the new line Il"

From the velocity diagram of figure 1b, we obtain for small
angular differences, the radial component of Vy(s) as:

() vp(s) = (V) + XM (I (s) - ' (s)VE(S)/ (2up(s))
4.17)

and the axial component

x'**(S)VT(S) = X'*(s)vT(s) + r'*(s)VN(s) - x'*(S)Vﬁ(S)/(ZVT(S))-
(4.18)
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Multiplication of equation (4.17) with x'*(s) and (4.18) with r'*(s)
and subtracting the latter from the first yields

VN (S ) B Ktk A
vy = X ) () - xR,
T
. ok ok . R
We solve the equations for x' * and r' and obtain the derivatives of

the new line rg*, which will be much closer to the exact streamline ['5
if the procedure converges,

§ Rk

(s) = x' () N1 = (V) /V GGNZ - T () Vy(s)/ V()
(4.19)
and
TEGe) = x' () VT 5 (VL ())Z + xT(8) Wy (8)/V(s).

(4.20)

The second derivatives x"**(s) and r"**(s) are obtained by a numerical
differentiation of the corresponding slopes, 1In the vicinity of the
separation point Sp» the slopes of I's and PZ*, respectively, are to be
considered separately in order to find the proper shape there. Inte-
grating the derivatives r'*¥*(s) and x'*¥(s) yields the new coordinates
of the improved line [&*

]
r¥%(s) = r (sp+e) +fr'**(s) ds
SB+€
and
S
K% (s) = x(syte) +fx'**(s) ds.
sB+e

The determination of the coordinates in the region sg =8 = sp + e will
be discussed later.
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Two possibilities of representing the perturbation potential
Qo (8) were given at the beginning of this chapter. The reason why the
perturbation potential (4.6) was chosen shall now be given:

The matrix of system (4.11) is in general not very well con-
ditioned [18]. For one specific case, which was the flow around the
disk with Cpg = 0 and N = 64 points on [; and I's, the determinant had
the value of det A = 5.4 x 10733, and the conditioning number was
Kg = 2.8 x 1072, 1If the right sides of the system were determined by
equation (4.4) and I'5 in the region j = v = N (case A), then the func-
tion (qp)y, as well as (Aq,),, had a discontinuity of approximately
equal magnitude at the separation points sg. The constant ¢ was approxi-
mately 1, Both functions had small oscillations in the vicinity of Sy
on I% which did not disappear after the combination of both functions,
according to (4.12). The amplitude of the oscillations was relatively
small; therefore, the procedure still converged. However, the dif-
ference in the tangential velocities (Vg - Vp(s)) did not fall below
a tolerance of .0l. These oscillations did not appreciably disappear
when a larger number of significant digits were employed.

However, if equation (4.6) determines the right side of the
system (4.11) (case B), the jump in the function (q05V at sp disappeared
with equation (4.8). We remember that originally the perturbation func-
tion (¢§), was obtained with a continuous source strength (q3), of the
system (3.2); and (qg)v is continuous if r'(s) is continuous on ['; and
I'>. In the second solution (Aq.,), of the system, the oscillations
remain, since the jump in the right side remains the same. However,
the oscillations disappear now with the constant C. The tangential
velocity difference (Vpg - Vp(s)) could be made smaller than .00l for
this case. :

Where accuracy is not the leading factor, approach (A) is
the shortest to obtain a solution, Here, the additional solution of the
system (3.2) is not called for, since Qg(s) and V%(s) do not appear in
the evaluation of the perturbation potential,

(2) The Direct Solution of the Problem by Specifying
Vrg on IY

Instead of using the specified potential along Pg, one under-
standably would prefer to use the tangential velocity Vrpg directly..
With this approach, one would eliminate the determination of the con-
stant C, and the procedure would be shortened considerably. However,
one has to overcome other obstacles.
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In lieu of the integral equation (4.2) or (4.10), we write
now equation (4.14) with (Vr)y = (Vpg)y for the region I%:

N
(a)) (a.) ' r! 8r
S T+ i o’y 1 v . Vv
(Vgg), = X, o Ayt o [Z{s — t 5 <2 In 5T >}AH
T v VR
! r's 8r
R NI -l GRS )]
2 2r |s.-s
1% E
N [x' (x -x )+r r']1G (k% )-r r'G (k%)
+ 1 2(q.) t vy Tut vy oM uy Loy I Tyl A
2x A _ 2 213/2 B
=1 [(xv XM) + (rv+rp) ]

This expression represents formally an integro-differential equation for
the unknown quantities (qo)v and (qg)v. The geometric functions x
and their derivatives are temporarily provided by the line I[%. We
express the derivative of the source strength (qé)v by the differentiated
Lagrange interpolation formula,

ve Ty

' = 71 1 '
(qo)v LV'l(qO)V'l + Lv(qo)v * Lv+1(q0)v+1'

The coefficients of the interpolation formula L;(s) are polynomials of
degree n, which contain only sj.

The elements of the matrix (4.11) for points of the region
v = N) on [s are given now by

~
[
A

s r' g r'sE 8r
- - 2¥)1n Il - ——| -+ 4 1 - 1n 14 .
2r s 2r |s -s
1% v v E

1%
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For the points v # pand p # v + 1, the elements are given by

A ' - + 1 k2 Y)- ! k
uru . [xv(xv xu) rer]Go( v“) rHrVGl( VM)

v L [(XV_X“)z + (rv+rp)2]8/é

For the diagonals immediately neighboring the principal ‘diagonal, we
write, with the above expression,

+ '
a - = - 4+ a - .
v(v+1) Lv+1 v(v+i)

If the points v = j and v = N are approached, the abscissas s, of
Lagrange's interpolation formula have to be shifted downstream, or
upstream by a point, respectively. In the neighborhood of the separa-
tion point sy, the differentiated interpolation polynomial represents
only a rough approximation to (qj),, since (qé)v is singular there for
the abrupt separation,

The integrand of the integral expression for the tangential
velocity component was developed into a series with small € = (s - sg).
The dominating term was 1/(sy-sy). The elements a,  therefore change
sign when passing across the main diagonal. The absolute value of the
elements on both sides of the principal diagonal is large, 1In all cal-
culated cases, the value of the elements ]av(vil)l was larger than the
value of the element of the main diagonal, which was given by the finite
part and the central differentisted coefficient of ILagrange's interpola-
tion polynomial. A matrix of this kind is usually not very well condi-
tioned. The resulting solution q,(s) was oscillating severely; therefore
it was not fit to be used for determining the normal velocity Vy(s) with
equation (4.15). The procedure diverged. The amplitude of the osé¢il-
lation varied with the number of points along I¥. Other methods to
solve the system (4.11) were not employed. This method of solution was
dFopped and, instead of Vg, the potential QbB(s) was specified along

s.

(3) The Free Streamline in the Neighborhood of the
Separation Point

The special behavior of the free streamline ', at the separa-
tion point is now investigated in more detail. 1In analogy to the plane
cavity flow, one can calculate families of convex and concave free
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streamline flows, which have the separation point sp and the cavity
pressure coefficient cpp as parameters. One can also apply the
behavior of the plane free streamline at the separation point to the
rotational symmetric one, especially since the two first terms of the
Laplace equation gy + @ + Z/r = 0 at and in the vicinity of a
singularity are overwhelmingly large compared to the third term of
the left side. In this respect the solutions of the Laplace equations
for both flows are gsimilar, This argument is definitely true for the
abrupt separation., TFor this case the free streamline [, the infinite
curvature at sy and the tangential velocity has an infinite gradient
on I'y at sg.

Smooth bodies with continuous curvature, furthermore, contain
points on their surface in which smooth separation occurs. For these
points sp the curvature «x of the free streamline I, is finite and equal
to the curvature of the body at sg. The tangential velocity is smooth
and continuous at sp when passing from ['; to I'>. The discussion of
these flows will be taken up again at a later time when special cal-
culated cases are presented.

The free streamline is approximated by a suitable polynomial
at the separation point sg. We assume, in accordance with the above
argument, that the two-dimensional free streamline has the same
behavior as the rotational one at s,. Let us, therefore, for illus-
tration, consider and discuss the Helmholtz flow around a plate of
width b = 2., From reference 16, we obtain the coordinates of the
free streamline I'> as a function of the parameter t.

- _b_ 2_ _ 2_ . _2b .. _ b
x = 5 Lt Nt2-1 In |t +Nt2-1 |]; «r (1) + 5

(4.21)

The parameter t attains values between t = 1 and £t = o, For t = 1, we
obtain the separation point sg of the plate. To change the equations
(4.21) to the arc length s, we differentiate x and r with respect to
t, form the expression ds/dt and integrate over t. The arc length is,
consequently,

(£2-1).

b
5 = sp T 3ax

The coordinates finally become, with the abbreviation ¢ = s-sp,

r(s) =1+ %E; 63%5 + 1 - l)
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and

N

wo) < gt [ B | [ B [ B

The first derivatives of the coordinates are

x'(s) = [ e ﬁgﬂ N/ ¢ é%g -1 r'(s) =1 e;ﬂ%E -1, (4.22)

and finally the second ones

" . s/ 3/
x'"(s) = pn <2\/€_‘t€ +m] 7; r''(s) = 4+T[ <l:e +-——] 3

(4.23)

These combine to yield the curvature

K(s) = - 5 (S) -7 ///k%J- e + Zi; .

Looking at the second derivative, we observe that the singularity is
caused by x'"(s). The expression r''(s), however, approaches with € - 0

a finite value.

lim ' (s) = - 22X = _1.7854,

2b
c—> 0

For the rotational case, we choose a similar polynomial which,
however, includes a wider variety of cases, the abrupt as well as the
smooth separation. After having inspected a large number of cases, we
decided that the expression

x
r'(s) = +rie + b163/2 cen (4.24)
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was the best fit to the free streamline ['; in the vicinity of the separa-
tion point sg. The terms r(, x{ and their higher derivatives are the

slopes, etc., of the body contour I'; at sy, x4 = x'(sp).

According to the relation x'(s)2 =1 - r'(s)2, we obtain,
after some algebra,

x'ir; €a, .{ [Z(rge + bl€3/2)(rg;x; Nea;) Nl+ea,

(xé * ré Neaq)Z

(rfe + blea/z)(1+ea1)] }}/2

- (4.25)
(x' £r' Nea;)2
) o
The second derivatives are
+ x' Na; a,(c' + x' Neaq) 3
rM(s) = ——2 - ° o + "+ 2b.et2 L, (4.26)
/o o 2
2 e N1 + €a 2(l4eaq)®
and, with r't" + x'x" = 0, we obtain

ey = - EEENE)

x' () T *

2Je (1 + cay) 2 J14ea,

[; x_ Nay (ré;xé Neag) _ x;r" Nea,

LT | —_—
al(rp f x! Neay +] W1+ ca; N )
(x; £ r; Nea,)

(1 + eaq)®

The second derivatives show again which of the expressions contribute to

the singularity. 1In the case of a flow separating from the disk, with
xg = 0 and rj = 1, x'"(s) causes the singularity, and r'(s) approaches a

finite value (a;r}/2 + rg). If we set a; = (4+x)/b, we obtain the exact
expressions for the plane case (equation (4.23)). On the other hand,

if xé = 1 and ré = 0, r'"(s) will cause the singularity. This case, for
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instance, represents the flow about a sphere with the point of separation
at sp = n/2.

We choose the sign according to
<
r'(s) - (r) + Ve + b3 So.

We obtain this relation from equation (4,24) with the denominator of the
first térm neglected. At the point of smooth separation, the square
root Néa; changes the sign and r'(s) has for this case the series
development:

r' + ' + b,e3/2 4+,
o o]

Integration of equation (4.24) yields the radius of the free

streamline I'o. We integrate between the limits sy and s, or ¢ = 0 and
€, and obtain

2r! x! _
r(s) = ro + a_o WN1l+eai-1) + 29 <«/eal«/1+eal - 1n |\/ea:L +\/l+eal|>
i 1
2 2b
n £ 271 _s/2
+rl S5+ e + (4.27)
and
2x! r'
x(s) = xg + ;—Q Nl+eca; - 1) = ;9- Neas Nltea; - 1n IJeal +'J1+ea1|>
1 1

1k/w <% (r] + x! ~Neay) (rg+blel/2)e N1l+eaq
- = +

2
(xé + ré Neaq) (xé + ré Neaq)

+ ...> (rg+blel/2)ede

... . (4.28)
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For the determination of the two constants a; and b,, we employ the points
v = j,k, the two points immediatg}z dowg?gream of the separaf/:ion point,

. . s S B ' - N - i/2
With the abbreviation A = r} €5 rk/ek r'oej 1 (ej/ek) ),

. 2
Aoz? <_1_ - (e /e )?l? ;>
o l+esa, J »\f1+eka

j 1
a; = -

Je J_k>

f R - (e /€ ):3/2
l+c.a ik Nl+e, a
j 1 k a

Since a, appears also on the right side, we solve the expression for a,
with the regula falsi., The constant b,; is now%iven as

1
b = 1 - %o o k™t
1= 372 \ Tk —— re o€ ) -
k
The curvature of the free streamline can now approximately be written as

+ x(')\/ €a, al(rz) s x; Neaq)

2 e (x! +x! Veap)  2(Iteay) (x! * x! NJeay)

(r"-3blel/ 2/2) Nl+ea,
+ % - - e (4.29)

(x(') + rz) Neay)
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If the flow separates smoothly from a curved obstacle, the constant a,;
disappears and the singular term drops out of the expression.

"

r
lim «(s) = £ .

X
e-» 0 o

This is the curvature of the contour I'y at the separation point.

For this case the derivative of the radius with respect to
the arc length is, with one additional term,

r'(s) =xl + e+ b,e3/2 + rg'ea/Z.

The second derivative is continuous since the singular term vanished.
The third derivative, however,

r"l (S) - %h + r"l ,

Je o

can be singular, depending upon b, becoming zero or not. The derivative
of the x-coordinate becomes now

r'r" rge2 blr; blrge5/2 ber
1 ' o O a/2
s) = x' - € + + € + + + ...
x' (s) o x! 2x! x! x! 2x! ’
o o) o o o
[ I | PO | ' = 11 f .
where -x" = roro/xO and Ko ro/x . To determine the constant b, we

employ tge point v =k , downstream of the separation point and retain
only the term with bj:

- T ' 1" 3/2
by [r (r0 + roek)]/ek .
The radius of the free streamline becomes now for the smooth separation

2

= ! + ll_e_
r(s) r, + r. € L

+ %‘ bles/g,

44



and the x-coordinate is

rérg 2blré / r'c')es
x(8) = x_ + x'e - —— ¢2 >z - .~ e .
(s) (o] o 2x;) 5x(') 6x'

The function (4.24) is chosen more or less intuitively; only for the
Helmholtz flow around a disk has (4.24) a justification to represent
the free streamline in the vicinity of the separation point. However,
equation (4.24) was fitted to a great number of calculated cases, all
of which the curve fit was very good and represented the geometric
functions of s, in the immediate neighborhood excellently for the
abrupt as well as for the smooth separation.

For the determination of certain velocity components, for
instance, the tangential velocity, the series expansion of the Kernel
function needs the derivative of the source strength, dq'(s)/ds. 1In
general, the source strength varies with the derivative of the contour
as indicated by equation (4.1). The derivative of the source strength
behaves, consequently, like r'"'(s). We assume, therefore,

q(s) = q  + coNe + qie + ced/2,

The points v = j,k downstream of sp are again used to determine the two
constants C; and Cs. We designate the value of the source strength at
sSgp @88 (g. We obtain this value by a simple extrapolation of the source
strength at points upstream of sg. It is

- ' - '
. - €k 5 [qk (q +q €,) 95 (qoﬂoej)}
L= -
(ej ek) €13{/2 6?/2
and
- 1
_ 9y - (agtage) Cy
Cg - - e_' .
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The derivative of the source strength with respect to the arc length is
finally

Cy

2e

q'(s) = +q")+C2%~/—e_+...

Again, the constant C; disappears if the separation of the free stream-
line is smooth,

(4) Certain Changes of the General Procedure for the
Application of Other Models

In the general discussion of the theory, we did not mention
the changes for other than the Helmholtz model. As we already mentioned,
this model has infinite streamlines I';. The integration, however, is
terminated in sy. This point must be placed sufficiently downstream of
sg in order to render the errors small. A special error investigation
approach is given in appendix D which determines, when applied, whether
the termination point sy should be placed still further downstream.

Levinson [17] determined the asymptotic form of the free stream-
line., With the assumption of suitable regularity conditions, he showed
that the free streamline had the asymptotic form of

T =

¢t Jx I - 1 In(ln x) +0 (1/1n x)
(in x)l/2 8 1n x x '

The constant C* is a form factor and can be linked to the drag of the
body by the relation

x4
pC” U

=]
I
|y

c0®

Sufficiently downstream of sp, the slope of the free streamline is small
and we can assume, according to the slender body theory, that the source
strength is proportional to the slope of the contour
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dx C 1 1
q x) === = [l-—(l/ln X)l/2+...:].
9 9 Jx (ln x)2/4 2

We observe that the source strength decreases in proportion to C*ﬁJgi
The asymptotic form for qo(x) was fitted to qo(x) of table 2, and
an excellent agreement was obtained.

According to equation (D.18) of appendix D, the induced
normal velocity at sp of that part of the infinite wake which is
neglected 1is proportlonal to the source strength at sp, to the inverse
of xg, and to the inverse of the exponent (k+l), which is a measure for
the decay of the source strength q with increasing s. Since in the
Helmholtz model the source strength attenuates only moderately with x,
the end point sg or xp has to be taken rather large in order to keep
ANN(SB) small,

The Riapouchinsky model requires rather extensive changes in
the method of solution. The symmetry of the model is reflected in the
symmetry of the matrix elements: a, - 2 (m-v) (m-)* where m = N + 1.
Due to the model symmetry the calculation effort is reduced to half,

The right side of the system of equations is an odd function (bv"b(m ))
with respect to sg for 2ry and (@O)V, it is an even function (b, b (m-v ;
for the constant C. From this behavior of the system, we can deduce that
(ao)y is an odd function and (4q,)y is an even function with respect to
sR. We have now the possibility to combine certain elements of the
matrix. For the numerical solution, we use only the N/2 points on the

forward position of the body and streamline up to the point of symmetry
s
R-

We write the matrix as

Ay A, 5 .. A1N/2 99, +Aq . 2r; + O
+ 2
A1 1 Ai 2 ° iN/2 i Aqu Ty +0
N = |- - - - -|. (4.30)
.. + 1
AJ 1 Aj 2 iN/ 2 0j T2%;j %03
AN/21 AN/22 o AN/zN/z Uon/ 2 PA9%N/ 2 cPoN/a_l_1
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The elements are now formed by the difference or sum of two avu's. For
the region 1 = v £ i, the elements are formed by the expressions

SE >
1%

8r
14
1n TEZ:EET + svln Il - E—

A =a +a = 1+
vV vy v (m-v)

1=

[ 1n1_7'1 'IKJAMH

-r K S -
%
p=1
: LS [rvX:/'r' ('X' "X~ )]G (k v(m V))'rm X_Ql( 2(m v))
/2 [(x w02+ (x o, 3213/2 L)
v m-v
and
. 9 r(r x -r! (x -x ))G (k2 )-r uF Gl(k2 )
A = a a == L r A
Vi Vi v (m-u) s [(xv-xp.)2 + (rv+ru)2]3/2 Mo

]3/2

: [rvxL—rLng-x )]G (k v(m‘g)) r(m ¥ G}( Vﬁniu)) A }.
Tm-vim-v

+ (r +r

[ Gy (- u)) (@- 1))

< N/2), we obtain

IIA
<

For points on the free streamline (]

- 8rv
= - 1
Avv Eov +a (m-v) {_[ Zln s -s Ap <SE n s,"Sg

] r F (kZ ) A
+ s 1n |1 - —| + SE>} + (m-v) o v(m-v)’ “m-vy
’ v [ -, )2 + (2 b, )P1°/2
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and

AxrF (k)

b ea ha o1l ARRG,
Vi VH v(m-p) T U (x -x )2 ¥ (r 4+t )2
v Tl Vo

2
1 2w @wo ®vam-w)
\/(xv-xm_u)2 + (rv+r

2
(-

If we solve the system for the function (qo)v, we apply the
upper sign. The lower sign is used, however, when (Aq,), is the solu-
tion to the system.

The procedure to solve the system (4.30) is the same as it is
with the Helmholtz model. The position of the plane of symmetry is
found with the condition r'(s) = 0 on If. We call this point sg.

The solution of the system (3.2) provides us with the perturba-
tion potential (@i)v and the tangential velocity (V%)V on the contour
I'; and 5. As a next step, we determine with (4.8) the expression o) v-
The perturbation potential of the symmetric body-cavity configuration is
an odd function with respect to sg. However, it can only be an odd
function if the integral expression in (4.8) disappears. In general,
this will not be the case; therefore, we have to subtract from the func-
tion (@y)y the value of this function at sg in order to make (o), an
odd function

s
@o(s) = wi(s) + b/\ (VTB - V;(s)) ds - @o(sR).
s
B

In the past we could freely change the constant C. For the solution of
this system, we again set C = 1. With equation (4.16), we determine the
constant C. If the constant C does not vanish, the general solution
(qo)v is not an odd function with respect to sg, since it still contains
the even contribution C(Aq,),. The normal velocity (Vy), is calculated
along the entire length of [*, and with it and equations (4.17) and
(4.18) an improved line [*¥* ¥s determined. Again we apply the condi-
tion r'(s) = 0, and a new point of symmetry sg is obtained. The cycle
can thus start anew,
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Few changes are required for the dissipation model. For
cavity pressures Cpg < 0, the absolute value of the curvature has a
minimum downstream of sp; thereafter it increases again. The curvature
increase of the free streamline in the theoretical flow will not be
realized in the physical flow because of turbulent dissipation. The
tangential velocity Vrg along the free streamline is constant only for
a short distance behind the base of the body. After that it decreases
in order to obtain the freestream value at infinity; Vp = 1. Therefore,
the free streamline of the dissipation model is replaced by a straight
line I's. The contact between s and I's is of first order. ['s repre-
sents the trace of a stream tube of constant diameter. The point of
contact is sp, where r'(s) = 0. The contact point sp is to be deter-
mined for each iteration step. It represents also the end and starting
points of two characteristic sections of the body. Therefore, the fixed
points in these two sections separated by sp must be determined for
each step

The stream tube TI's is considered to be a solid surface. Con-
sequently, the boundary condition (1.21) must be satisfied on I's. The
integral equation (4.1) or (4.9) which is to be used for the region Ty
and which satisfies (1.21) is now also applied to the region I's. Thus,
the linear algebraic equation has the following matrix form:

[ = p— = - =]
aja 812 .. 2 qu+AQOl 2rl + 0
- [}
all a12 : aiN 01_F£g01 2r1 +0
) . . T+ 1
%51 %2 N[ [%o3 T Moj Poj
. . = . .. (4.31)
3. e anl 9ok T A%k Por T 1
1. 12 a1y o1t 21 0 +0
0
E‘Nl vz 0 | [Yon TAon +0

=0



The elements of the matrix (4.31) for the regions 1 = vy < i
and j = v £ k are exactly the same as those of the system (4.11) for
the regions 1 = v =i and j = v s N. The elements of the additional
region I's (4 = 0 £ N) of (4.31) are given by the relation

1 8rv sE
- ' . = -
avv = [1 + zﬁrv {%v In Tg;:E;T + svln |1 sv|> rvaSE
N 8r
- rx' 1n A4 -1)~1r «x |A
L s -8 Vv v
=1 bov
L
and
ot - 2 \_ 1 2
L. r, (rvxv rv[xv Xu])Go(kvu) ruXle(kvu) A
VE ow /2 _ 2 213/2 o
[Ge,x )% + (x #r )21

The right-hand sides of (4.31) for the same region are

b =2r' =0
v v

if we solve for (qg,),, and

if we solve the system (4.31) for (Mq,)y. The source strength q,(s) is
continuous at the point of contact sp; its derivative, however, is dis-
continuous and we have to treat qg(s) in the neighborhood of sp separa-
tely. The integral of (4.8) is fvaluated only between sp = s = sp,
since (@y), is used only along IZ.

The position of sp is a function of the cavitation coeffic-
ient Cpg. With decreasing Cpp, the point of contact approaches the
separation point sg. For the numerical calculation, we ‘terminate the
stream tube I's a certain distance sy downstream of the separation point,
According to the error estimation given in the appendix, it is sufficient
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to let I's extend approximately 10 radii downstream, since q,(sg) attenu-
ates rather quickly on I's and the exponent k is rather large.

For the investigation of the rearward separation point from
a sphere, the free streamline ['5; has to be altered in the vicinity of
the x-axis. We understand by the rearward separation points those
points sp for which the free streamline forms a cusp or intersects the
x~axis. For these cases, the curvature of the free streamline is posi-
tive, and therefore concave to the outer flow field. Due to the vicinity
of the x-axis, the nature of the series expansion (1/r >> 1), and the
inadequate treatment of the rearward stagnation point, small errors in
qo(s) appear in that rggion. The normal velocities computed with these
qo(s) tended to make [5 convex; whereas, the r?al solution should remain
concave in order to form a cusp. Therefore, [ was replaced in the
region of the rearward stagnation point. Whenever the curvature of the
free streamline became lower than a certain value k,, the curvature
k(s) was replaced from this point on with an exponential function

K(s) = Ko exp(-a(s-sp)).

The factor a was determined thus: that the next derivative of the curva-
ture K'(sy) was continuous. The curvature Ky = K(s1) can be determined
with an expression derived from (C.16) by requiring that the tangential
velocity at sy, be equal to the specified velocity Vpg.

We write
Vpk = OVg/ov = (1-V.)/sh
with an unspecified sh. Next, we form the ratio KO/K*(SL) and set
M*/th = 1, Thus, we obtain an approximate equation to determine Ko
*
v, (SL)(l VTB)

) = ;
L VO - Vi)

K. = K (s

where «*(sy) is the curvature of [% at s;. On the remainder of the line,
which we will designate I's in accordance with the dissipation model, the
pressure cannot be specified any more, Therefore, the rearward stagna-
tion point location is in error, and also the curvature at that point is
wrong. Another method to find the cusped cavity is mentioned in a later
chapter.
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The system of equations for determining the source strength
ie the same as given by (4.31) with the exceptions of the right side
for region £ = v £ N, which becomes now

—_ T
bv = er

if we solve the system for (q,),, and

if we solve for (Aq,),. Since the derivative of the curvature is con-
tinuous in sy, the derivative of the source strength dqo(s)/ds is con-
tinuous and smooth in the neighborhood of that point. Therefore, no
special treatment of the region adjoining sy is given,

For a certain (sp; Cpg) combination with Cpg > 0 and Cp < O,
the free streamline I's does not intersect the axis of symmetry. The
curvature of the free streamline is still positive and concave; how-
ever, it has a minimum downstream of sp and after that, it increases
rather rapidly. The function r'(s), originally negative, changes its
sign in the vicinity of the curvature minimum and ['; diverges. Whenever
this happens, we determine the point of contact between I's; and I's with
the condition r'(s) = 0 and apply the concept of the dissipation model.
With Cpp decreasing and Cp approaching zero, the stream cylinder I's will
diminish until finally Cp = O and TI'; is forming a cusped cavity., Thus,
an extrapolation of the above-mentioned dissipation model will lead to
the cusped cavity.

In the general discussion, it is implied that the parameter sg,
the separation point, is given and it is kept constant during the itera-
tion., However, if one wants to determine the point of smooth separation
from round bodies, one must apply an iterative procedure. For a number
of tentatively chosen separation points, one conducts the complete iter-
ation procedure as described and determines the constant IJEII of equa-
tion (4.24). 1If two points sp are encountered between which the
expression *+a; changes sign, one can easily determine the point for
which a; vanishes or becomes sufficiently small. This is the point of
smooth separation sg (smooth). By plotting the curvature of ', versus
(s-sg) logarithmically, one can decide if sg can be improved. At the
same time, one can check (4.29) for its validity.
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The Cavity of the Lifting Body

The cavity of a body placed at an angle ¢ toward the flow will shift
to an asymmetric position. The body experiences a 1lift proportional to
the angle of attack . The circumferential velocity w;(s,) on the body
surface will also exist on the wake or cavity surface, thus creating
locally over- or under-pressures which in turn will reshape the cavity
and will destroy the rotational symmetry., The local pressures will shift
the wake surface to such a position that the condition of pressure con-
tinuity across the wake surface is satisfied. We assume, again, negli-
gible velocities within the wake, Consequently, a necessary conclusion
is the vanishing of the local normal force along the wake or cavity.

Cy(s,0) = 0. (5.1)

Qur main concern in this report is not so much the proper conditions of
the flow along and around the wake stream surface and its exact position
in space, but the influence of the wake on the 1ift distribution of the
forebody. An exact treatment of the wake especially of the distant
wake is not necessary since velocity and thus pressure perturbations
attenuate rather quickly. We employ therefore a simplified model. TIts
schematic is given in Figure lc. Since we treat again only bodies with
rotational symmetry, we must assume that the flow separates along a cir-
cumferential line which lies entirely in one plane normal to the body
axis. This exemption excludes round bodies with an interior separation

line.

Condition (5.1) requires a certain tangential velocity. We can
calculate it and call it Vp,p. With this velocity we can define a
potential gip(s) which is known along I'; except for a constant C.

To describe the general theory we employ again the Helmholtz model
(or infinite streamline model), We assume for reason of simplicity that
the wake pressure coefficient Cpp is independent of the angle of attack
.. This is a reasonable assumption for small angles of attack. We
therefore use the same Cpg of the axisymmetric flow case. For the
cavity subjected to under-pressure we will use the dissipation model
exclusively., Special changes of the general theory will be discussed
at a later time,
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(1) The Potential and the Velocity Components

We place now the forebody at an angle of attack ¢ toward the
parallel flow field., The wake will shift to a new equilibrium position
where condition (5.1) is satisfied. The exact potential of this body
will be developed now. Assumptions (1) through (3) of chapter 4 are
also valid for this case.

The total potential of the body is in body-fixed coordinates,

o] o}
X% Y, 2z

vector U given as

o}

gl(xo, YO, Zo) = zO Sin 0 + CP]_(XOs yO’ ZO). (5‘2)

The axial component of the undisturbed flow is U, sin ¢, the normal com-
ponent is V., = U, sin . Only this component will be considered here.
The first term on the right-hand side of (5.2) represents the potential
of this field. The function ¢, (x°, y°, 2z©) is the perturbation poten-
tial of the body with bent cavity,

- o 0O ¢+0O
216, ¥0, 29 = 7L ff __B(e%n%,€°) ds _ ’
S '\[(XO-E,O)z + (yO_nO)Z + (ZO'EO)Z

5.3)
where dS designates a surface element,

The potential (5.2) is for our purpose still too general. We
therefore want to make it more accessible to calculation by using certain
characteristics of the cavity at small angles of attack. Since we deal
usually with the pressure distribution of the forebody an exact descrip-
tion of the wake is not necessary. The only "lift-producing'" component
along the wake is U, sin (x(s)). This component will shift the cavity
centerline, which can now be described by the function z,(s) of Fig-,
ure lc, Our goal is to find the position of the centerline of the cavity
or wake which will be attained due to condition (5.1).

To formulate the problem, we make the following simplifying
assumptions:

(a) The cavity cross section remains rotationally symmetric.

TIts diameter is fixed and obtained from the axisymmetric
flow case,.
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(b) The planes normal to the body axis are shifted parallel
to itself. The new trace of the bent axis in this plane

is situated along a line z,(s).

(¢) The local normal force vanishes along the wake or cavity.
This requires a special function z;(s). The velocity
Vp.g is known as the cavity streamline; so in the total
potential g;B(s) except for a constant,

(d) We neglect locally the condition of pressure continuity
across the stream surface. The condition is satisfied
only in the mean according to assumption (c).

(e) Only terms linear in ¢ are considered, higher terms are
neglected. The contour of the cavity or the wake is
assumed to be small and negligible, &(s) << 1.0,

(£) Only those body forms shall be considered here which
have the line of flow separation in one plane normal to
to the body axis. This excludes bodies which permit
an interior separation.

(g) Since the exact angle of attack distribution (s) along
the free streamline is not known a priori an approxi-
mate distribution of(s) must be assumed. The resulting
cavity boundary is designated as 5, All calculations
are performed approximately with o*(s).

(h) Normal velocities (Vy,(s,a) # 0) will result on Iy if
0*(s) and a(s) are not identical. The magnitude of the
normal velocity indicates how and how much the angle of
attack distribution must be changed.

The next step is the development of the potential in cylindrical coordin-
ates. We refer to Figure 1lc where the coordinates of a fixed point PO
on the surface of the body according to the assumptions are given in
body-fixed coordinates as:

x°~x; y%=~r sinw; 2° ~z,(s) + r cos w; s° = s, G.4)

A simple integration from the separation point sp to a field
point s yields the function by which the wake is shifted

s

z3(s) =fa<s> ds. (5.5)

°B
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Since the arc length is approximately the same as in the axisymmetric
case we keep s as the independent variable, For the summing point Q°
on the surface of the wake one obtains similar to (5.4)

t°=¢t; 1°=~psin W, CO ~ z,(0) + p cos w'; o°=~o. (5.6)

The potential of the undisturbed flow field, represented by
the first term on the right side of equation (5.2), can now be written
as r(s) cos w sin ¢ The denominator of the integral expression (5.3)
contains the distance between point P° and QO:

R =N (x0-£9)2 + (y°-1°)2 + (z9-¢9)2. (5.7)

If we introduce (5.4) and (5.6) into the square root expression for ﬁ,
we obtain finally for

1
Jf;-§3é4;§;62-}rh ébézw?w')+2(2i(§5-il(o))(r cos w-p cos w')+0(58%)

1
R
(5.8)

The relation between the angle &(s) which we call camber and the angle
of attack a(s) can be seen in Figure lc:

a=a(s) +38(s). (5.9)

Consequently, the function z;(s) in (5.5) becomes
s
z.(8) = f < —Oﬁail> ds. (5.10)
°B

For small values of the angle of attack ¢, one can develop the recipro-
cal distance R into a series which we will truncate after the second
term:
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1 . _ 2a(z1(8)-21(0))(r cos w-p cosw')/o

J(x-§)2+r2+pé-2rp éos(&'-wi [ (x-8)2+r32+p2-2rp cos (w' -w)]13/2

1
R
(5.11)

For the source distribution of the body and the cavity for a small angle
of attack, we choose the symbol pu(s,x) = q (s)a(s)/a. After we insert
pu(s,) and equation (5.11) into the perturbation potential (5.3), we
obtain the approximate potential of the body with a cambered cavity in

normal floy.

Sk

25
1 '
@l(s,a,w) ~ - ZE \jp <; au(c,abwp_cos w . _ O(Q?)> do' do.
o 0 (x-§)2+r2+p2-2rp cos (w'-w)

The comparison of this expression with equation (1.1) reveals
that the first term under the untegral is equal to the perturbation poten-
tial of the body with a straight cavity, The next higher terms are at
least proportional to of. If we apply partial differentiation and obtain
the velocity terms depending on ¢, we can prove that these terms do
not contribute to the total 1lift, since the exponent of cos w is even,
and the integral of the expression for the normal force vanishes. We
consider, therefore, from now on, only the perturbation potential

s
E 27
[0 g,0) p cos wdw' do
P1(s,6w) ='Z§ff Lo, 00 D cos W' do .
00

N (x-£)2HrP+p2-2rp cos (w'-w)

which is the potential of the axisymmetric forebody-cavity combination
with a variable angle of attack distribution along the wake line [Z.
The total potential is now given as

F1(s,0,w) = r(s) cos wsin @ + @i(s,q,w). (5.12)

On the surface of the fixed forebody, the angle of attack is
constant and we set sin & = 1. Along FZ the angle of attack o(s) is
determined by (5.9). The angle ¢ is still a constant; however, it con-
sists now of two variable contributions, ‘
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Partial differentiation with respect to the arc length s
yields the tangential velocity for meridian plane w = O:

Vp,(5,0) = (sin @ + vi(s,0)) r'(s) + uy(s,0) x'(s). (5.13)
The normal velocity for the same plane is given by
Vy,(s,@) = (sin a + v1(s,0)) x'(s) - ui(s,) r'(s) (5.14)

and obtained by partial differentiation with respect to v.

These velocity components as written above are valid and
exact only along I';, the contour of the forebody. For obtaining the
velocity components on the cambered cavity we have to insert (5.9)
into (5.13) and (5.14), linearize according to assumption (&) and
the resulting approximation velocities are:

Vg, (8,Q) = (a(s) +va(s, ) r'(s) + us(s,m) x'(s) (5.15)
and

VN (8, = (@(s) + vi(s,®)) x'(s) - up(s,®) r'(s). (5.16)

The terms «(s)r'(s) and «(s)x'(s) are in this form the tangen-
tial and normal velocity components of the normal velocity uy, sin (a(s))
of the undisturbed flow field respectively. The perturbation velocities
ui(s,x) and v,(s,x) are those of the straight cavity with variable angle
of attack distribution,

The linearized problem consists now in finding the angle of
attack distribution o(s) along the straight and rotational symmetric
wake or cavity which produces a vanishing normal force Ch(s,) =0
along the line IZ.

(2) The System of Integral Equatioas

An integral equation with which we are able to determine the
source strength on I'; is given by equation (5.14) with Vn,(s,®) = O.
We introduce the perturbation velocities, linearize, and obtain
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°E

u(s,o) = -2ox' (s) - '};fp.(0,0t) Kq(s,0) do. (5.17)

o

The Kernel is represented by equation (1,28), where n = 1,

For the cavity boundary F?, we use the total potential @.g(s,Q)

expressed in terms of the perturbation potential with unknown source
strength., With assumption (c) the potential g,p(s,x) is known. W1th

equation (5.12) for the meridian plane w = 0 and ¢ replaced by o*(s), t
assumed angle of attack distribution, the integral equation for the
region 5 can be written then as
°E
o 1
Zip(s,0) - r'(s) a”(s) = 5~ f (0,0 Kp(s,0) ds, (5.18)

o]

where the Kernel function is in accordance with equation (1,9) and n =1
given as

-20F1 (k3)
N(x-£)2 + (r+p)Z

KQ(S,O) =

In both integral equations, (5.17) and (5.18), all functions except the
source strength p(s,x) are known or assumed to be known. The Kernel
functions depend only on the geometry of the forebody and the cavity,
We employ according to assumption (a) the geometry of the axial sym-
metric flow case. Thus, Kq(s,o) and K@(s,c) do not change any more,
and we need to determine them only once at the beginning of the itera-
tion, The angle of attack along I'; is constant and o = 1. Along TI%,
however, o(s) must be assumed first,

On the left side of equation (5.18) the potential g;p(s,qx) has
to be evaluated. The next step toward a solution is therefore to relate
the potential to the normal force coefficient. We start out from the
definition of the local normal force coefficient;
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25
Cn(s,oo = -r(s)\jpcp(s,a,w) cos w dw. (5.19)
o

The pressure coefficient again can be expressed by the tangential veloc-
ity. 1In conjunction with the velocities of the axial flow case, we
obtain the total tangential velocity as

2 - . 2
VTG(s,a,w) (VT(s) cos o + VTl(s,a) sin ¢ cos w)

+ V%Z(s,a) sin®q sinZy, (5.20)

where the velocity component in circumferential direction is given as
VTz(s,a) = (-sin a(s) + wi(s,q)).

Since in the equations the velocities VTl(s,a) and VTE(s,a) are con-
nected with the angle of attack, these functions are therefore based

on sin ¢ = 1, The perturbation velocity w,(s,x) is given that value
which it will attain in the meridian plane n/2. For a positive angle of
attack, this value will, in general, be negative. With the retention

of all terms, the pressure coefficient becomes

= == - V - = 1
Cp(s,a,w) Cp(s,a 0) -~N1 Cp(s,a 0) VTl(s,a) sin 2 cos w

- = - ye 2,, - .2 =)
+ (1 Cp(s,a 0) VTl(s,a} cos<w VTE(s,a) sin“w) sin=q.
(5.21)
Insertion of this expression into (5.19) produces no contribution of the

first term, and third (&) term, only the term linear in ¢ contributes
to the normal force; hence

C (s,0) = 2w x(s) N1 - Cp (5,0=0) V. (s,0). (5.22)
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The integration of VTl(s,a) along s yields

LT c, (5,0
P1(s,0) = 5= f : ds + @i1(s,,). (5.23)
i r(s)oc«/l-Cp(s,oc=0) B
B

The normal force shall vanish along the exact free streamline I's, hence
the potential becomes

’@;"LB(S’OD = gl(SBaa)' (5'24)

The cavity boundary is thus an equipotential line, which means that the
tangential velocity vanishes on I's. We set VTl(s,a) = 0, also VNl(s,a) = 0,
since ['s is a streamline and we arrive at a condition that

up(s,q) = a(s) + vy(s,a) = 0. (5.25)

The constant @,(sp,0) in equations (5.23) and (5.24) is the value of the
total potential at the separation point sg.

The left side of the integral equation (5.18) contains the
expression (F;B(s,q) - r(s) o?(s)) which could be construed as the per-
turbation potential of the cavity in normal flow, if a®(s) would be
identical with «(s). However, we are using for the numerical calcula-
tion the assumed angle of attack distribution and therefore @;p(s,x) -
r(s) a*(s) is only approximately equal to ¢,B(s,). For a convergent
procedure I's — I's and o&*(s) — a(s) and, consequently, we define

©1B(s,0) = Pip(s,0) - r(s) A'(s) = i(s,0) + C. (5.26)
The barred term represents all known functions

@1(s,q) = -r(s) A*(s), (5.27)
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and the constant becomes

Similar to the axial flow case, we can represent the perturbation poten-
tial of (5.26) with the perturbatlon potential @l(s o) of the assumed
angle of attack distribution plus some corrective terms. After combin~
ing

S
9i(s,0) = Fi(s5,0) - x(s) o (s) +f vy, (s,0) ds
S
B

and

Pp (550 = Fi(sy,0) = C

we add and subtract in equation (5.26) the terms

8

3 ki3
Fi(sp,0)  and fle<s,oo ds

)

to obtain finally, with equation (5.23),

C (s,q) ds

(e = 91000 - 7 f co e ©-29

The constant C depends again only on the potentlal difference at the
separation point s The perturbation potential ¢ (s o) and the normal
force coefficient C“(s o) of the approximate free streamllne F2 are
obtained with the solution p(s,®) of the integral equation (3.1) with
n=1and q;(s,) = -x(s)Q*(s). Since (3.1) was obtained with the
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condition VNl(s,a) = 0 along the entire boundary Iy, FZ and I's, PZ is
consequently for this case a streamline, We combine again all known
functions and obtain

s %
C;(s,a) ds

_— 1
p1(s,0) = 9i(s,q) - f —
' * 27 o r(s) Vl—Cp(s,QFO)

B

(5.29)

If the assumed angle of attack distribution oﬁ(s) is approaching the
exact one ¢(s), the integral in equation (5.29) and the constant C in
equation (5.28) will disappear. For the evaluation of the integral in
(5.28) the integrated Lagrange interpolation polynomial with n = 4
points, two on each side of the intervals, was used.

The representation of the potential ¢.B(s,q) with the assumed
perturbation potential @i(s,oo and additional correction terms had
advantages for the numerical solution of the integral equations. The
discussion of these advantages follows the same line as that of chap-
ter 4 of the zero angle of attack case. A repetition is therefore not
intended here.

Next, we continue with the discussion of the procedure to
obtain a solution of the integral equations for the lifting body.

Equation (5.28) is inserted into the left-hand side of the
integral equation (5.18). For determining the constant C, one other
equation must be furnished; temporarily we might set C = 1 for the
numerical calculation.

The system of integral equations (5.17) and (5.18) is converted
to a set of N linear algebraic equations which are satisfied in N points
on the contours ['; and Pg. We introduce summation signs instead of the
integral signs and obtain now for the integral equation (5.17) of the
region ['; with points 1 = v = i

N 8r
-x'a = %% [1 -3 1 % {%' <}n T;—:g—T -3)-1r K }-A
vV e, S 1% u %y vV M

1 SrV SE
2nr {%v <%E In sv-sE] sv In Il svl 23E> rvaSE}]

v

(equation (5.30) continued on next page)
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A .

N 1_.t 1
}: 20 x [rvxv-?v(xv-xu)JGl(ksu)-ruxv(Go(k§M)+G2(k§H))/2
HoH [(x -x )2 + (r +r )2]3/2 H

v o Vo

(5.30)

Along I';, the angle of attack distribution is constant, and a, = 1. The
primed summation sign indicates that the summation at the point py = v
is left out.

For the region Pz with points j = v £ N, the following equa-
tion determines the source distribution y,. The constant C, as men-
tioned above, is set equal to unity.

°g

N
HV 8rv 8rv
() +1 = 5 [ % iIn — - 2> A - {} in - + s ln |1 - —
v 25 = Su Sv‘ ) E s, sEI v s

v

' w 2r Fp(k2 H)A
B R 6.0
T [(xv-xu)z + (rv+ru)2]l/2

The two equations (5.30) and (5.31) are solved for the source

strength according to a special procedure. In matrix notation, we
obtain
o B . ", N
ayy 81z ...  2iN| |pit A -2x3 + 0
o + -2x'
31 % v ain| M T A x; + 0
----------- - - - - = |- - =--[. (5.32)
a a, . a, . + . .+ 1
ji T2 | By A P13
N1 ONe Tt NN *ﬂi+ A}‘LN cP1N+1
L. - L - . .
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The elements are formed by the right sides of equations (5.30) and
(5.31). 1In particular, we obtain:

1 8rv Sp
_ ' - - =] - -
a,, = [1 + Ey {%v <}n TEZ:EET s In |1 SV, 23E> r K Sp
N 8r
- x'<1n Y -3 rK:IA}]
5 [ v s,78y 1202

for the region 1 = v = i;

LI | - 2 - 1 =3 2
oo b e Oy D160, o, (G () 4620 0) /2
VU 7{/2 [(XV_XH)Z + (rv+ru)2]3/2

for the region 1 = v = i and v # u;

N
1 }j 8r,, 8rv E
aVV—_2_T[ 1HW-Z>AU~- Sg lnls—_s—l—+svln 1-S—I-S
= 9 v E v

for the region j = v £ N; and

A F (k2
T 1( ?E?

T ) (e )E1ME

for the region j = v = N and v # p.

We solve the system (5.32) twice in order to obtain the
particular contributions. For the first solution, we employ the right

sides
b = -2x%'
1% v

for the region 1 = vy = i with a, = 1, and
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b, = Qv

for the region j = v £ N, where @, is given by equation (5.29). The
particular solution of the system yields the source strength E;. For
obtaining the second part of the solution, the right sides of the system
are altered. The elements ay,, are the same as for the first part.
Analogous to the zero angle of attack case, the right sides of the sys-
tem become now

1A
<
IA
e
b
jo]
[N

for the region 1

A
<
A
=z

for the region j

The particular solution of this system is Ay, which is
normalized to one. Since the geometry of the free streamline ['s of
the axisymmetric flow case does not change any more, the elements of
the matrix which consist only of geometric functions will remain the
same throughout the iteration. The same is true for the second right
sides (0; 1). Therefore, the second system needs to be solved only
once. The solution Ay, can be stored and used for the iterations.

After the particular solutions have been obtained, we com-
bine them to form the general solution with an arbitrary constant C.

MV='@+CAHV. (5.33)

However, before we discuss the determination of the constant C, we want
to write the summation expressions for the tangential velocity. We use
equation (2,10), replace the integral sign by a summation sign, and

paying attention to equation (4.13) for the tangential velocity, obtain

1
A
lJ'V

0 N r' 8r
= ! - v v 1 _Y_ _ v
(VTl)V %y 21 + 2x ['}; {;M-SV + 2rv 4 In |su-sv‘:ﬁ'Au
NS

(equation (5.34) continued on next page)
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4 l

S TR Y

L1 §i [xL(xV-xu)-rer]Gl(kﬁu)-rHrL(GO(k§H)+G2(E;H))/2
2

A .
[Gxp-x )% + (rv+ru)2]3/2 W

(5.34)

The general solution (5.33) is now inserted into expression (5.34). We
set (Vpy) = (Vpig) = 0, choose the special point for which this equation
is to be satisfied at v = j, which is immediately downstream of sy and
solve for C:

N,
'A, - u.Fo 2 - o,r'
Hi%3 7 My i3
C=—F— ' , (5.35)
K. A + F 'A.
}:A“u gt T ATe T Ay
p=1

with the special functions

s.r' Sg r'.sE 8r .
R R RN IR RS-l GRS re )l
2r s, 2r s.-S
J ] ] J E

r' 8r.
+-—J—-<% - 1n T———l—{>}-A
2r, s -s,|
J B d

and

1 - ' 2 y_p ot 2 2
[xj(xj XM)+rjrj]Gl(kjp1 rurj[Go(kju)+G2(kju)]/2

Kju B zru 2 213/ 2
- 3
[(Xu xj) + (ru+rj) ]
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Once -the constant C is known, we insert the general solution into the
expression for the normal velocity (2.9), which is now

N
lJ"V 1 srv
= 1 2 - 1 - -
(nadv = %% + 2 [1 2y Z{XV . [s,75, ] > rva}Au

%
T

1

{ < 8rv sEI
x' [ s_1n 4+ s 1n |1 - =1 - 2s > - T K S }]
va 1% E hVﬂE v sv E VvV Vv E

1
T2

§é [rvxb-rL(xv-xH)]Gl(kiu)-rurL[Go(kiu)+G2(kiu)]/2 )
BoH [(XV-Xu)g + (rv+r“)2]3/2 W

(5.36)

The boundary condition Vy(s,®) = 0 is not satisfied on I's
until the iteration cycle converges within a prescribed tolerance,
Then p(s,®) is also a solution of (3.1), and C,(s,x) vanishes on the
cavity boundary. 1In analogy to the axisymmetric flow case, one can
construct, with the aid of the velocity diagram of Figure 1b, an
approximate expression for the normal velocity on P§:

Vo (5,00 = Vo (s) (6% (s,0) - 6¥(s,)), (5.37)

where 6°%(s,q) is the new improved slope of the contour FZ*. This
slope can be approximated by the local angle of attack

wloata

e‘”‘(S,Oé) = - Oﬁ**(S), (5.38)

We insert this expression into (5.37) and obtain a new angle of attack
distribution along the cavity or wake:

VNl(s,a)

a‘k*(s) Na*(s) - W— .

(5.39)
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This distribution forms the basis for the next iteration step. The new
angle of attack distribution o**(s) is inserted into equation (3.1) which
is then solved for p%*(s,a). With this source strength, we determine a
new normal force coefficient CE*(s,0) on I'S*. The perturbation potential
(5.29) can now be improved. For this improvement we need to solve the
system (5.32) for u(s,). This procedure is repeated until condition

(5.1) is sufficiently satisfied and the constant C is small enough,

At the beginning of the discussion, we mentioned that the
representation of the potential in terms of the perturbation potential
of the assumed line IS plus corrective terms received preference over
any other approach. According to the calculated cases, we found out
that the matrix is not as well conditioned as that of the zero angle of
attack case, The jump of the function (0, 1) of the right side again
caused fluctuations of the solution (Apl)v in -the neighborhood of the
separation point sp. These fluctuations entered the general solution
with finite constant in all its severity., However, if the approach
with vanishing constant C was used, these fluctuations vanished with C,

For those cases for which the cavity is subjected to an under-
pressure, we employ exclusively the dissipation model for the angle of
attack case, 1In the axisymmetric flow case, we treat the boundary I's
as a rigid stream tube with VN(s,a) = 0. For the angle of attack case,
however, I's will shift and attain a position in space to satisfy condi-
tion (5.1). Thus, it does not differ from ['5. Both I's and I's are
therefore subjected to a varying angle of attack distribution ¢(s).

(3) The Direct Solution of the Problems by Specifying Vip,B on F;

For' the case under consideration, the second approach is
definitely possible by prescribing the tangential velocity Vp,p on the
cavity boundary as indicated in the previous chapter. TFor the region
I's enclosing the boundary points j = vy < N, we replace (5.31) by (5.34):

N ' g
X by Hy 1 rv 4 Ty
- s ! = - — —— — -
(VTlB)v %Ly 2% Ay + 25 Ez s 7S, * o In 7Sy Ap
1

1
{2 )E (s 1 oy W
- <1n s, 2r 2t |sv’SE
L i'h L0 Gy e r 10 065 ) e 10,05, 040205, 1/2
= e )2 + (e )19
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The unknown function of the integro differential equation is
the source intensity y,, whose derivative is also sought, The geometry
of the body-cavity configuration of the axisymmetric flow case is again
employed here. The derivative of the source strength is obtained with
a differentiated Lagrange interpolation formula [18]:

py = Lo u L'u + 1

v+1uv+1

The elements of the matrix for the region ['; with the boundary points
j = v £N are now given by

L A X r;/ 8rv S
avv - Zn {:}: -{ 2rv <% - In su-sv >}~A

r' s r's 8r
1% i) E v E < v >}J
- In |1 - —=| + 57— (3 - 1n ,
{( 2 v s, 2rv sv—sE

and for v # pand  # v £ 1, the elements are

_ Ar . (x'{x -x }—r i )Gl(k2 )-r r 1 (G (k2 )+G2(k2 Y)/2
v 5t

[ Geymx)2 + (rv+ru)2]3/2

The elements neighboring the principal diagonal contain,
however, one additional term. It is the differentiated coefficient
of the Lagrange interpolation formula

7': 1
=1, + a .
v(v+1) vy v(vt1)

This method was used for different numerical examples. The solution
u(s,) showed extremely severe fluctuations; thus, the normal velocity
on % could not be used to improve the angle of attack distribution.
The procedure diverged, and it was therefore dropped. Even an increase
in significant figures did not improve the situation.
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The Forces on the Body

To determine the total drag coefficient of the body, the component
of the pressure coefficient in x-direction is integrated along the
meridian angle w and along the body contour ['; up to the separation
point sp. In addition, one has to add the base pressure coefficient
which is considered to be constant over the entire base area. If we
choose the base as the reference area, the expression for the total
drag coefficient becomes

2
SB 70

€y = \jp Co(8)r(s)r' (s) duds - r2(sp) mC oy, (6.1)
[¢)

o}

where Op = R2x is the dimensionless reference area.

) The drag of a body can also be determined with the cavity radius
R” of the dissipation model. The radius R™ is identical with the radius
of the stream tube ['s. We consider the body-wake configuration as a
half body of radius R¥. We ask for the pressure drag of this half-body
in potential flow. The drag is undetermined as long as the base pressure
is not specified. We assume for this purpose that the half-body contour
is interrupted by a slot in which the base pressure acts, Since the
x-component of the integrated pressure along the contour disappears,
only the suction force of the wake remains., We therefore obtain

2, .2

C_ = R¥ (VTB - 1. (6.2)

Additional forces and moments are the total normal force, the
induced drag, and the moment coefficient.

The force normal to the body axis, the normal force coefficient,
is obtained by integrating the r-component of the pressure coefficient
along the meridian and arc length direction:

Sp 2

b1
CyOy = -fr(s)x' (s)fcp(s,w,oz) cos w dw ds. (6.3)
o]
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The major contribution to the moment coefficient is obtained by
multiplying the above equation (6.3) by the moment arm about a refer-
ence point x(s):

Sg 27
é OOy = -‘JF}(s)x'(s)x(s)‘jpcp(s,w,a) cos w dw ds. (6.4)

o] 8]

One other contribution to the moment coefficient is obtained by
integrating the angle of attack dependent pressure coefficient about
the body., 1In the angle of attack case, C, is a function of the meridian
angle w, The pressure coefficient therefore changes the sign with
increasing w, and a force couple exists,

Sp

1
Oy OM =~ 3 \/pr(s)r'(s) Cn(s) ds, (6.5)
o
where Cph(s) is given by equation (5.22),
Converting equation (5.22) to the pressure coefficient form, one

term proportional to & will appear which gives one contribution to the
tangential force:

S

B
é: CTGM =¥/1r(s)r'(s) [Zﬁ(l-Cp(QFO)) - n[(uqy cos 9+ (1 + v,) sin 9)=
0
+ (-1 + wqy)2]) ds. (6.6)

Considering all the contributions to the particular total force
coefficients, one obtains for the induced drag of the body at angle
of attack

CD(a) = CNa(Sin o cos @) sin o + CT(a) cos Q,
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and for the 1ift coefficient
CL(QD = CNa(sin o cos ¢¥) cos O - CT(a) sin ¢,

where the 1lift coefficient per unit angle of attack is given by equa-
tions (6.3) and (6.6):

CT(oc) = CDO + CT(O:Z).

Finally the moment coefficient becomes
Gy (@) = (CMNa + CMTO? sin & cos ¢, (6.7)

where CMTQ is given by equation (6.5). The neutral point of the force

is given by

/L = Cv.. /Gy .
MNa Na

The Numerical Calculation Procedure

The excessive amount of calculations required for the solution of
the problem necessitates the use of fast electronic computers. The
problem was therefore coded for the CDC 3200 and the UNIVAC 1108.
Before the problem is discussed in detail, the preparation of the
necessary input of body coordinates and elliptic integral tables is

presented.

For the integration of the integral equations, we employ the
quadrature procedure of Gauss [19]. The abscissas of the quadrature
are the zeros of Legendre's polynomials. The body under investigation
as sketched in Figure 1 is subdivided into NT characteristic sections,
The JT-points of the quadrature procedures are distributed within each
section; in Figure 1, we set JT = 8, 1In this manner NT X JT points are
placed along I'y, I'» and I's. By choosing the right distribution of
characteristic sections, it is possible to place a larger number of
points in the vicinity of the separation point, For instance, in
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Figure 1, sections 2 and 3 are smaller than the others, The separation
point was always an end point and starting point of a new section. TFor
an abrupt separation, this section remained constant; however, for
smooth separation, the point sp is for a constant base pressure coef-
ficient obtained by an iteration,

The complete elliptic integrals Gnh(k®) and Fp(kZ) are calculated
with the aid of Landen's transformation [19). This avenue of calcula-
tion proved to be the shortest and best. Only a few iterations were
necessary to obtain an accuracy up to 12 digits. 1In most cases the
number of iterations remained below 8.

The geometry of the forebody and the assumed cavity are read into
the computer in terms of the characteristic sections s, and rp, where
sp and rp are the arc length and the radius of the particular charac-
teristic section, respectively. A subroutine specifically developed
for the particular body distributes the points s, of Gauss' quadrature
procedure within the characteristic sections up to the separation point.
In Figure 1, there are, for instance, two characteristic sections, 1
and 2, with three boundary values sp and i = 16 points; 8 for each
section. For these points the subroutine determines the values x,, ry,

X3, x|, r}, k, and the angle of attack o, = 1. For the cavity or

Vo Vo

wake, starting with the point j = 17 in Figure 1 and ending with N = 48,

a table with (N-i) values is read into the computer; these are s%, rb*,
4€,

0. With these initial data, the following are calculated: r%, x

V’
X X % . .
' oxT, ox"T, These data are either assumed or approximated.

v 2 v? v 2 v

We can now start to determine the source distribution q,(s) of
the axial flow case,

(a) We consider I's as a streamline on which condition (1.21) is
satisfied. With equation (3.1) and n = 0, we obtain the set of N
linear algebraic equations which is solved for (qo)i and'which satis-
fies the boundary condition (1.21) in N points on ['; + I'%.

(b) The next step leads to the determination of the velocities
%), (VZ)V with the help of equations (3.3) and (3.4), where we set
n = 0, Thereafter, we calculate (C§>V and the perturbation potential
(wg)v. We add to the perturbation potential the corrective terms of

equation (4.6).
(¢) Then we solve the system (4.11) with the corresponding right-
hand sides twice. We obtain the complete solution (4.12) with an

unspecified constant C. The partial solution (Aqo)v is normalized to
c =1.
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(d) The function (qgy), is inserted into equation (4.16), and the
constant C is changed in such a fashion that the tangential velocity
Vrj at v = j downstream of the separation point sg is equal to the
specified tangential velocity Vrg. 1In Figure 1, j was set equal to
17. 1If the condition for Vyp is satisfied in one pojint on I then it
is satisfied approximately on the entire length of [7%.

(e) The general solution qg, now with specified constant C is
1nserted into equation (4.15), and a normal velocity Vyy 1s calculated
on I'%, With the equations (4.19) and (4.20), a new line r'e* will be
calculated. This line is then the new free streamline for a new itera-
tion step, and we start at point (a). TIf the absolute value of the
difference of [C“(s) - C Bl is equal to or less than .00l, we terminate
the iteration process and consider this case as solved.

For the body under normal flow, similar conditions prevail, A
rough approximation of the angle of attack distribution was already
stored in the machine, The geometry of the cavity stays fixed as
obtained in the zero angle of attack case; therefore, the Kernel of
the integral equation does not change during the angle of attack
iteration.

(a) We consider for the first step of the angle-of-attack itera-
tion the cavity or wake as a body with solid contours. This makes Fg
a streamline, The normal velocities diminish on the contour F We
solve for the source distribution H‘ which satisfies, for the given
angle-of-attack dlstrlbutlon the condition (1.21) in N points on the
body and cavity.

(b) With this source distribution u;, we can calculate the veloc-
ities u7,, ﬁv’ and le with the aid of equations (3.3) through (3.5),
the local normal force Cnv with equation (5 22), and the perturbation

potential P71 with equation (5.29), where @7 is given by equation (2.2).

(¢) The solution of (5.32) provides us with the complete expres-
sion of the source strength with a partial solution AT based on C = 1,
The partial solution /Ay, needs only to be calculated once, since neither
the right side nor the elements of the matrix change any more throughout

the iteration,

(d) We determine the constant C which makes the tangential veloc-
ity Vp,p disappear on % at the point v = j, equation (5.35). Thus,
the tangential velocity will approximately disappear over the entire
length of I's, since” the potential function has changed accordingly,
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(e) The constant C is determined, and one inserts the source dis-
tribution y,, into equation (5.36) and calculates a normal velocity com-
ponent Vy, along the cavity. Finally, one can compute an improved
angle-of-attack distribution along I% which represents the basis for
a new iteration step, e.g., (5.39). TIf the absolute value of the
normal force coefficient is lcﬁ(s,a)| = .00l, we terminate the pro-
cedure and the problem is solved.

This represents the basic procedure of the iteration scheme, 1In
those cases where other models are employed, the corresponding equa-
tions have to be used; otherwise, the basic structure of the procedure
remains the same,

IV. CALCULATED CASES AND COMPARISON W ITH EXPER IMENTS

In order to gain an insight into the magnitude of the error which
is involved by neglecting the infinitely long wake or cavity and by
the numerical procedure, the flow field about a half-body with the
potential Q(x,p*,@) = x-E/ (47p*) is calculated, where E is the strength
of the source at x, on the x-axis. The strength of the source is deter-
mined in such a fashion that the radius of the body at infinity is equal
to unity; then the distance of x, from the stagnation point on the x
axis is equal to one-half the radius, The spherical coordinates, the
radius oF is given by ¥ = sin (p/2)/sin ¢. The pressure distribution
is obtained by a simple calculation:

= 1-4 sin®(gp/2) + 3 sin*(g/2). (V.1)
The contour of the body is thus given by
r = 0* sin g; x =x_ - o cos q. (V.2)

Since the numerical method employs the arc length s as the independent
variable, we would like to represent the half-body in terms of the arc
length:

s =\/$'Jb*2 + (dp*/dg)?2 de.
)
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We obtain finally, as the arc length,

. 2 3 )
s = [J—”égs /(CP) j 1 - 7 sin? 3 + FGik) - E(%E,k)} (v.3)

where k€ = 3/4 is the modulus of the incomplete elliptic integrals
F(k,8) and E(k,06). The integrals are known and tabulated in reference
19. For comparison with the numerical method, we need the first
derivatives

cos ¢ + Ei%_Q tg (p/ 2) sin ¢ - 593—9 tg (o/2)

x' = o = . opre 9T
xp > T ds -
1 1
Jl + 7 tg=(qp/2) 'Jl + tg=(qp/ 2)
(v.4)
and the second derivative:
d%r 1 sin @ cos @
R { 2 + tg(@/2) - sin @
BT T (eP(elay/ G eost @ 2
tg(p/2) (cos @ + EL%JQ tg (¢/ 2)
- - . (V.5)

8 cos®(qp/2) (1 + % tgg(@/2)>

After about 20R the body was truncated. The bow of the body was con-
sidered to be solid, I';, and its separation point was placed at sy = 1,
The contour of the half-body downstream of the separation point was
considered to be the free streamline I',. The pressure distribution was
given along I's and was identical with that of the half-body as given by
equation (V.1). 1If we insert now the exact geometric functions, equa-
tions (V.2) through (V.5) of the free streamline I'; into the numerical
method, and if we compare the two pressure distributions as obtained

by the numerical method and equation (V.1), we should obtain the error
of the method. The stations of the characteristic sections sp(s),
together with the pressure coefficient at the separation point Cpg(sp) =
-.29422, are listed in table 1, Following the arc length s of the 62
points along I’y and I's are the source strength qo(s), the error (ERR)
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(Cpp(s) - C%(S)/CPB(S) on [%, the given pressure coefficient CPW = Cpy(s)
of (V.l), the remaining normal velocity VN = Vy(s), the calculated pres-
sure coefficient CP = C%(s), the perturbation potential ¢,(s) = PO, and
finally the integral of equation (4.8). The error ERR becomes larger
and larger toward the end of the truncated half-body, as we expected.
The error, however, is even in the last point on [%, less than 1,63 per-
cent. The normal velocity VN is almost negligible., 1In the second part
of table 1, the geometric functions of the exact half body, equations
(V.2) through (V.5) are compared with those obtained by the numerical
method, We notice that the radius of the body as calculated with the
numerical method becomes greater than 1 close to the end of the body.
The difference, however, is less than AR =.0006R, at the end of the
body. Looking at the source strength Q = q_(s), we notice that the
strength attenuates rather fast on the near?y cylindrical part of the
half body. We approximate the decaying curve by c/x™, where n > 8.

The absolute value of the source strength is very small [qo(s)| < 3,10-°
in the vicinity of the end of the body. Consequently, we surmise that
the influence of the truncated part of the wake is negligibly small.

An error estimation of appendix D also shows this clearly.

The exact drag coefficient of the forebody, which is in polar
coordinates and according to (6.1),

Pp
% = ZT‘pr(‘P)r(CP) dr () - rix Cpp = 3 [sinz(cp/Z) - 2 sin*(g/2)
o

+ 6 sin6(@/2)} - 1% Cpys

was calculated for the wake pressure Cpp = -.2942, a radius rp = .7433
and an angle of ¢ = 1.676 in radians as Cp = 4944, On the other hand,
the drag coefficient obtained with the numerical method was Cp = .4946.
The separation of sp was smooth, and the curvature of the streamline I'p
was equal to the curvature of the forebody.

The sequence of convergence for successive iteration steps is shown
in Figure 2. Plotted are the coordinates of [% for the axisymmetric flow
and the position of the wake centerlines z,/R for the angle of attack
case @ = 10 degrees. Even with a rough zeroth approximation (a cylinder),
only about six iterations were necessary to determine the free streamline
up to about 15 radii behind the separation point sg. For the angle of
attack case, the angle of attack distribution changes barely at all
after nine iterations. The zeroth approximation was tentatively assumed

to be o (s)/a = 0.
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In reference 13, Garabedian determined the flow field around a disk
using the Riabouchinsky model for two base pressures, For the disk with
Cpg = O (the infinite streamline model), he obtained the drag coefficient
Cp(0) = .827. The corresponding drag coefficient calculated with the
present method for the same base pressure yielded .824 < Cp(0) < .829
depending on the position of sp. (The number in parentheses designates
from now on the base pressure at which the drag coefficient was deter-
mined.) For the calculation, the boundary condition was satisfied at
discrete points along the arc length of the contour; 16 points were dis-
tributed on the forebody and 64 points on the free streamline up to a
downstream distance of 60 radii, The points were more closely placed
at the separation point; 8 points were placed upstream and 8 points
downstream of sp. The maximum error of the remaining normal velocity
was on the order of Viy < .00l up to about 30R behind the disk. Further
downstream, the error in the normal velocity increased to about Vy <
.009. The corresponding discrepancy in the pressure coefficient dis-
tribution amounted to about [CP(S) - CPBI < ,001 up to s = 30R. 1In
table 2 the calculated pressure distribution and the geometric func-
tions for the cavity behind a disk for Cpg = 0 are tabulated. We
notice that in the region of 30-60 radii the curvature frequently
changes the sign; the value, however, stays relatively small so that
the influence of the error on the pressure distribution of the forebody
remains small, Similar fluctuations occurred in the source strength
qo,(s) in the same region.

The pressure distribution of a disk approached normally by the
flow is plotted in Figure 3., At the stagnation point, the pressure
distribution starts with a horizontal tangent. At the separation
point sy, the pressure coefficient has a vertical tangent on I';; on
the free streamline, however, it has a horizontal tangent. The
derivative of the pressure coefficient Cpg(s) along ['; has a square-
root singularity similar to the curvature on [5.

Figure 4a shows the difference in the location of the free stream-
lines of plane and rotational symmetric flow for zero base pressure,
and shows one main feature of the rotational symmetric flow field., The
wake is narrower than that of the plane flow field. For different
truncation positions sy, the free streamline ', was calculated, The
marked points are those which were used in the numerical calculations;
we hardly notice any influence on the position of I's at least up to 3R
behind the separation point,

An asymptotic representation of the curvature «(s) and the second
derivative of the streamline radius r'' (s) of the axisymmetric as well
as the plane case is shown in Figure 4b. The two asymptotes were
determined by equation (4.26) and (4.29). The constant a, was cal-
culated to be a; = 4,526, Since also the following points closely
follow the asymptotes, we can surmise that the assumption of the square-
root singularity and the representative expression for the asymptotes are
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justified., The second derivative of the radius of the free streamline
I'> approaches, for vanishing ¢ = (s-sg), the value -a,/2 = -2,26. The
circled points are calculated. The first point is placed about

€ = 4,10"“R downstream of sg. With the help of this point and the one
following in the r(s)-distribution along 5, the constants a; and b,
are determined. The curvature and the other calculated functions were
not always so smooth as in Figure 4b; however, if the upstream distribu-
tion of points was made approximately the same as the downstream dis-
tribution, the functions were always smooth, The reason for this is to
be sought in the determination of qo(sB) by extrapolation of the upstream
values of the strength,

The second drag coefficient, obtained by Garabedian with a different
method, was for a base pressure of Cpp = -.2235, The modified drag coef-
ficient Cb(-.2235) = Cp/ (1-Cpp) had the bounds .85 < Ch < .88. His best
estimate was Cfj = .865. A recalculation of this case produced Cﬁ = ,830,
a rather marked difference, though the maximum cavity diameter in both
cases agreed much better: D¢/2R = 2.3 as compared with 2,28 obtained by
the present method, Figure 5a shows the shape of the forward half of
the cavity, and Figure 5b shows the pressure distribution over the front
part of the disk and a part of the free streamline T, along which the
pressure was assumed constant, For our calculation 16 points were dis-
tributed on the meridian of the body I'y and 40 more on the forward half
of the free streamline. An approximation of the position of the sym-
metry point sp was obtained with the aid of the dissipation model. The
point sp, where I's; joins I's, was used as the zeroth approximation. With
the procedure discribed in chapter & (section (4)) the calculation was
continued, - The half-length of the cavity was L/DC =~ 6.4,

Figure 6 compares the drag coefficient obtained from water tunnels
[16] with that obtained by the present numerical method. Cones of dif-
ferent vertex angles were placed into a water tunnel, and their bases
were ventilated to obtain different base pressures., The theoretical
results reproduce perfectly the experimental data. Some numerical
results for the drag of cones are given in table 3, The numbers
designated with an asterisk are obtained with the Riabouchinsky model;
whereas, the remaining ones were obtained by the dissipation model,
All models, despite their differences, converge to the infinite stream-
line model for a base pressure of Cpg = 0. A comparison of the two drag
coefficients for Cpg = -.41 and the disk, B8 = 90 degrees, gives an indi-
cation of the difference between the Riabouchinsky and the dissipation
model. However, for smaller Cpg, the difference in the drag coefficient
will definitely become greater,

Figure 7 shows the pressure variation in the wake of a disk as it
was measured in the water tunnel [zo] and in the wind tunnel [21]. 1In
reference 20 different torpedo head forms were tested. 1In the case
shown, a blunt cylinder in axial flow was tested; therefore, the com-
parison is not quite justified, since the thick cylinder had a tremendous
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effect on the wake, A better comparison was obtained from reference 22.
On the whole, both wake pressure distributions have the same character,
The theoretical curves were obtained with the dissipation model for a
base pressure of Cpg = -.41. Across the front part of the disk, again
the pressure agrees very well with the tests. Along the wake, the
theory is right . only in tendency. The shape of the pressure distribu-
tion suggests that a stream tube with a smaller radius than that of

the dissipation model should be devised. For this model, the free
streamline will be followed a little bit longer until it meets the

line I's. At this point a free stagnation point is formed.

Two additional points obtained from wind tunnel tests of reference
21 were drawn into the drag plot of Figure 7. The Reynolds number of
these tests was 7 X 10%, The drag coefficient obtained with the numeri-
cal method and the Riabouchinsky model for Cpg = -.41 was Cp = 1,176,
The drag coefficient obtained with dissipation model and the same Cpy
was Cp = 1,177,

The cavity behind a disk, photographed in reference 22, is repro-
duced in Figure 8. The measured base pressure, Cpg = -.188, was remark-
ably constant throughout the cavity up to a distance of six disk diameters
downstream, The free streamline for the same Cpg was drawn on the photo-
graph, and a very good result was obtained. The free streamline corre-
sponds to the dissipation model, and therefore the streamlines run
parallel from the maximum cavity diameter on downstream.

The flow field and the wake behind a disk with a base pressure of
Cpg = -.41 were surveyed in a wind tunnel [21). The pressure and veloc-
ity profiles in radial direction were measured, and the corresponding
mean streamline § = 0 was calculated. The theoretical free streamlines
obtained with two different models were compared with the experimental
one in Figure 9. The measured drag coefficient was given as Cp(-.41)
= 1,13, whereas the theoretical yielded Cp = 1.18., The free stream-
line of the Riabouchinsky model was not plotted beyond x/R = 3, because
the measured pressures along the wake centerline differed greatly from
the assumption of constant pressure for the theoretical model,

We now come to the discussion of separation points for convex
bodies, especially for spheres, TFor this purpose we refer to the
schematic representation of possible separation points in Figure 10,

On the surface of the sphere exists one region (S-A) beginning at the
stagnation point Sin which any of the separating free streamlines of
the infinite wake (Helmholtz model) are convex and have infinite curva-
ture at the separation point §. The streamline intersects the body
contour within S-A, unless the body ends at sp. The free streamline I'p
separating smoothly at point A, has a finite curvature, which is equal
to the curvature of the body at sp. The maximum wake occurs for a
smooth separation. The separation angle belonging to the point of
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smooth separation is designated as g (smooth). Any free streamline
separating between A and B has a point of inflection, Tmmediately
downstream of the separation point ['s is concave. A distance suffic-
iently downstream of sp, ' will change the sign and become convex along
the rest of I'>. The free streamline separating at point B approaches
the x-axis asymptotically without changing the curvature of I's, which
is concave. The streamline forms a cusp at infinity, and therefore

has a free streamline width of zero at infinity.

The free streamlines separating between points B and S' all form
a cusp on the x-axis a finite distance downstream of the separation
point, The tangential velocity Vg and I'; in this region decreases
with increasing separation angle ¢ and becomes zero at the rear stagna-
tion point S'. These cavities have zero drag. The corresponding cavi-
ties with a finite cavity width have negative drag.

A selection of different separation angles and the peculiarities of
the associated free streamline are given in the following figures, which
we will discuss mutually, TFigure 11 shows the behavior of the free
streamline I's immediately downstream of the separation point sp (smooth),
@s (smooth) = 57.57 degrees. The cycled points are calculated. The
solid lines represent the asymptote for the curvature k(s) and the
second derivatives x''(s) and r''(s). The curvature approaches x5 =
K(sg) = -1. The other two functions are consequently finite and
approach their respective xg and ry.value of the contour r,;. The
infinite wake from 4a point sg = 50R was neglected. The procedure to
determine the smooth separation point was as follows: The character-
istic section downstream of the separation point sp was for two separa-
tion angles g = 57 degrees and g3 = 58 degrees specified to be the same,
Lsp = 0.01; thus, the first point y = j had the same distance (s; - sp)
for both cases. The constants a, which were obtained were plotted versus
#s and interpolated linearly for that ¢ for which a; = 0, This interpo-
lated value was used for the next approximation. For a sufficiently
small value \all < 1079, a, was arbitrarily set equal to zero and the
corresponding angle ¢, was defined as g3 (smooth). The value of the
constant b, was then b, = ,8817. 1In addition to the geometric func-
tions the source strength q,(s) is plotted. The comstant c,; vanishes
correspondingly, The asymptotic expressions for the geometric func-
tions, as well as for the source strength, represent the corresponding
numerically obtained functions very well,

Figure 12 shows the indeterminancy of the separation point on a
sphere for a base pressure coefficient of Cpg = 0. Three separation
points are chosen. The corresponding pressure distributions on sphere
surface and free streamline in the neighborhood of the separation points
are plotted in figure 1l2a., The radial derivative with respect to the
arc length is plotted in figure 12b for the three cases, and figure 1l2c¢
shows the corresponding curvature k(s8) of the free streamlines. The
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curve with the index 2 indicates the case for smooth separation, Here
the derivative of the pressure coefficient with respect to the arc

length dCp/ds is a continuous function on the sphere and free stream-
line, the condition for smooth separation. At this point the radial
derivative and the curvature are smodth functions of the arc length,

The curve with index 1 shows the case where the flow separates upstream
of the point of smooth separation. The pressure coefficient Cp(s) on

the sphere vanishes with an infinite negative tangent at the separation
point, and the curvature k is convex and greater than the curvature of
the sphere. Consequently, the free streamline penetrates the solid

body, and this case of an abrupt separation is therefore physically
unrealistic. One other abrupt separation is shown by the curve with

the index 3 downstream of the point of smooth separation., The pres-

sure vanishes at the separation point with a positive infinite tangent,
The minimum pressure occurs on the sphere, and the pressure in the cavity
is higher. The curvature of the free streamline at the separation point
is concave for a short distance, has an inflection point, becomes convex
further downstream, and decreases monotonically, For cavitational flow
one can argue that the pressure must be a minimum in the cavity because,
otherwise, even a small reduction in the pressure coefficient Cp would
induce cavitation elsewhere, This implies that the free streamline must
be convex toward the cavity. By Bernoulli's theorem, this is equivalent
to the condition that the velocity is a maximum on the free streamline,
Assuming convexity, for the free streamline not to penetrate the obstacle,
the free streamline must have finite curvature, 1In fact, the local curva-
ture of the obstacle cannot be exceeded. These Brillouin separation
conditions point out that smooth separation should be the only physical
possibility for cavitation to occur.

The curvature k(s) of some selected free streamline [, is shown in
figure 13, For separation angles from gy (smooth) to @5 ~ 110 degrees,
the base pressure coefficient was arbitrarily selected as Cpg = 0. For
higher separation angles @5 > @g the pressure coefficient was limited
and could no longer be chosen freely. We notice that the free stream-
line has a point of inflection within the region A-B (g, (smooth) < g
< @) which shifts downstream on [, with increasing ¢;. The concave
region increases thus until at g =~ 110 and Cpg = 0.0 the free stream-
line is only concave and is therefore forming a cusp at infinity, If
the separation point shifts beyond B, the corresponding free streamline
is only concave. 1In Figure l4a, we notice that the wake or cavity width
decreases with increasing g . For g > s the free streamline ', and
the streamline ['s of the dissipation model have a point of contact of
first order. The diameter of the stream tube ['s vanishes for a certain
value of Cpg. We designate this value to be Cpg (lim). The free
streamlines then form a cusp on the x-axis, and wake form I is obtained.
The particular (Cpp, @g)-combination is plotted in Figure 14b. For
Cpp values below the line designated as "Cpg (lim),' the free stream-
lines intersect the x-axis and each other. On the other hand, if we
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choose Cpp values above CPB(lim), we obtain the wake form II with nega-
tive drag, On the line Cpg(lim) the drag coefficient is zero because
the corresponding wake width is zero. For g, > 7, the free streamline
I'> is only concave, and one can prove with equation (C.16) that Vg < 1.
Therefore, only positive pressure coefficients are possible in this
region. Since the mean curvature increases with increasing g, the
tangential velocity Vpg on I'p decreases until it becomes zero for

PJs = 180 degrees. Figure 15a shows, in addition to wake form I, also
wake form II for the case gy = 130 degrees. The pressure coefficient
Cpg(lim) = .222 produces approximately zero drag. However, if we
choose Cpg = .25, we obtain a finite wake width with the corresponding
drag coefficient of Cp = -.026. 1In order to obtain the cusped wake
form, the rearward region of the cavity had to be changed. The pres-
sure coefficient on the fixed cone surface (its geneatrix is an expo-
nential function) did change from the specified Cpp only slightly.

Only in the region of the rearward stagnation point did the pressure
change appreciably; therefore, the point of intersection between ['s and
the x-axis is quantitatively and qualitatively not quite right., One
other possibility, however, to obtain the cusped cavity is the extrapo-
lation of the wake form II to lower Cpp values.

Figure 15b shows an additional region where the separation angle
Js and the wake pressure cannot be chosen arbitrarily. The correspond-
ing wake forms for a Cpg = -.1 are plotted in Figure 16. 1If we hold,
for instance, the base pressure constant (Cpg = -.l) and let the
separation angle gy change to higher angles, then the wake width
decreases and with it the drag coefficient. The curvature of I's is
concave and becomes convex shortly before it joins the streamline ['-.
The convex region finally disappears, and ['s is only concave. A con-
cave streamline cannot sustain Vpg > 1, and therefore the streamline
model breaks down. For Cpg = -.l, the separation angle Qg ~ 99.6
represents the limiting rearward angle possible for the model., One
other try for Jg = 99.75 failed. Figure 13c also shows that, for
decreasing (g, the contact point sp between I'p and 'y moves forward.
With decreasing Cpp, the separation angle g (smooth) moves to higher
angles. The limiting separation angle {g, however, moves forward from
110 degrees for Cpg = 0 to a position of 90 degrees for a Cpg = -.525.
At this point, the free streamline I'; has disappeared and I'; leads
directly into I's. These investigations could be carried on almost
without 1limit, Although there are still a number of interesting ques-
tions about separation from round bodies, we are presently content
only with this limited investigation,

In Figure 17 an attempt was made to predict the laminar separation
point of the sphere. (The boundary layer method used can be found in
reference 23.) The boundary layer equation is solved by a series
approximation of the '"'separated" velocity distribution, by the use of
an iterative procedure. For a fixed base pressure coefficient of
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Cpg = -.45, an arbitrary separation point around gy =~ 80 degrees was
chosen. The resulting velocity distribution on the sphere was developed
into a polynomial containing terms of up to s’, where s is again the arc
length, The boundary layer equations were then solved, and a new separa-
tion point was obtained. The wind tunnel experiment yielded a separation
point of g =~ 81 degrees; the iteration procedure predicted a separation
point of gy = 77 degrees plus. One of the difficulties was to reproduce
the velocity distribution in the neighborhood 6f the separation point.

A more modern procedure might have given a much closer result, Fig-

ure 17 shows the theoretical pressure distribution for a laminar separa-
tion at ¢y = 80 degrees, and for turbulent separation at g = 143 degrees,
Due to the laminar separation bubble (T) on the lee side of the sphere,
the theory does not quite reproduce the actual pressure distribution

over that portion of the surface. The theoretical pressure distribution
was selected in such a fashion that the pressure distribution of test

and theory coincided very well over the forward part of the sphere,

For a separation angle of gg =~ 130 degrees, we obtain the lowest pos-
sible pressure coefficient as CPB(lim) = .222 with Cp = 0.

The Brillouin separation conditions were tested in a water tunnel
[24] on a sphere, (The results are plotted in Figure 18.) The drag
coefficients for spheres obtained by the use of axial singularities
(flow past a half-body) were given as Cp(0) = .30 in reference 24, This
result can be compared to the smooth separation occurring at an angle
of about g = 57 to 58 degrees measured from the forward stagnation
point, The corresponding drag coefficient obtained by the present
method yields Cp(0) = .31. It seems, however, that cavitation does not
occur at the point of smooth separation (Brillouin point), probably
because of surface tension. The cavitation occurs, rather, at greater
angles (g = 80 degrees depending mildly on base pressure coefficient.
Using these separation angles, the corresponding drag coefficients were
calculated. Varying the separation angle by a few degrees and plotting
the corresponding drag result, it was found that the drag coefficients,
shown in figure 18a, were closer to the minimum drag coefficient of the
sphere for fixed base pressure coefficient,

Figure 19 shows the behavior of the free streamline immediately

downstream of the separation point sp = gg = 7/2 from a sphere. For
this point r' = 0, ' = -1 and x, = 1. The curvature of the sphere is
constant and K, = - 1. With equation (4.29) and only a; considered,

we obtain, for ¢ — 0,

a; o

2 V:; %5

k(s) =

86




where a; = .3616. This function is plotted in figure 19 as an asymptote.
Close to the separation point the free streamline is very well repre-
sented by the asymptotic expression. For this point, only the second
derivative of the radius r(s) contributes to the square root singular-
ity. Consequently, the function x'"(s) must approach a finite value:

which indeed will be approached.

The 1ift of cones was measured in the water tunnel [25]. Fig-
ure 20 plots the 1ift coefficient gradient dCj/da for zero angle of
attack and a base pressure of Cpg = .0 and -.1. The base pressure, a
function of the angle of attack, was held constant for these investiga-
tions., One notices that, with decreasing base pressure coefficient,
the 1ift coefficient gradient also decreases. For very small cone
half-angles, the lift slope approaches the 'slender body'" result of
dCp/da = 2. With increasing cone half angle, however, the 1ift grad-
ient decreases and becomes negative until at B = 90 degrees only the
drag component contributes to the 1lift,

Tn addition to the theoretical 1lift coefficient gradient obtained
by the numerical procedure, some approximate theories are proffered
which were obtained from reference 26. The curve for the modified
slender body was obtained in the following way. For calculating the
normal force of a slender body, only the change of the momentum in
planes normal to the body is considered. For slender bodies, this
plane moves with the velocity of U, along the body axis, and the
result is the well known Cig = 2.0, TFor cones with an appreciable
half-angle B, the velocity along the cone surface will be less than
U We assume that this velocity will be Vp cos B. We obtain with
section 6, for the lift gradient,

CLa - CNQC - CDO’
where
- 2 2, _ _ 2
CNa 2VT cos<p = 2(1 CPO) cos“p.

Finally, we obtain with

Lo, = 2(1 - Cp) cosZp - CDo
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an expression which shows a relatively good coincidence with tests for
all half-angles including the disk.

One other method, termed "strip theory,'" was taken from reference
26 and plotted into Figure 20. The theory resembles a correspondence
theory, where two-dimensional results are applied to bodies of revolu-

tion,

The 1ift, moment, and drag coefficient of cones with half-angles
of B =15, 45, and 90 degrees and a constant base pressure coefficient
of Cpg = -.1 are plotted as a function of the angle of attack in Fig-
ure 21, The disk is here considered as a cone of 90 degrees half-
angle, TFor technical reasons the angle of attack was chosen to be
negative, The drag coefficient CD(a) as a function of the angle of
attack is fairly well reproduced by the linearized theory except for
the cone of B = 15 degrees, where the theory does not quite predict
the increase in drag with angle of attack, It is possible that some
higher terms in ¢ which are neglected here play a certain role. The
lift coefficient is satisfactorily reproduced as is the moment coef-
ficient over the angle-of-attack range where separation of the flow
from the lee side of the body is not expected, @ = 8. The reference
point for the moment coefficient was in all cases the center of the
cone bases and the stagnation point of the disk,

Figure 22 shows the 1ift and drag coefficient of a 15-degree cone
plotted versus the base pressure coefficient. Even for an angle of
attack of o = #20°, the theory is still predicting the right 1ift coef-
ficient, Also, the tendency with varying base pressure coefficient is
well reproduced. At an angle of attack of ¢ = 0 degrees, the cavity
was subjected to a hydrostatic lift which was noticed again on the fore-
body. The theoretical result was therefore shifted toward the experi-
mental for & = 0. The change of the drag coefficient with the angle of
attack is very good for small angles; for higher values of «, however,
the theory yields smaller values. This was already noticed in Figure 21.

In Figures 23 and 24 the same coefficients are plotted as in Fig-
ure 22 for a 45-degree cone and a disk, respectively, 1In these cases,
the cavity had little or no effect on the ¢ = 0 shift for the 1lift
coefficient, since the normal force for a 45-degree come is very small

and that of a disk is zero.

The downwash angles behind cones of g = 15, 45, and 90 degree half-
angles are compared in figure 25. With decreasing cone half-angle,
which corresponds to increasing lift coefficient of the forebody, the
ratio of the local wake angle of attack c(s) to the angle of attack of
the forebody « increases, For a disk, therefore, the wake leaves the
base essentially in the same direction as the free stream; whereas,
for cones the downwash angle increases behind the base and approaches
asymptotically a certain limiting value at infinity, according to the
normal force of the forebody.
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To obtain an idea of how good the approximate theory describes
the wake of a body at zero and small angles of attack, the free stream-
lines were drawn into the shadowgraphs of the flow configurations of
Figures 15 and 16, Figure 26 shows a cone of 50 degrees half-angle at
an angle of attack of ¢¢ = 10 and O degrees, The base pressure coef-
ficient was measured at Cppg = -.4, The lower edge of the wake is
fairly well reproduced close to the body base where the shear layer
of the wake is relatively thin. Figure 27 shows the wake of a 15-degree
cone at ¢ = 10 and O degrees with a base pressure of approximately
Cpg = -.32. Wake boundary and free streamline show again a fair coinci-
dence, at least up to two diameters behind the base of the cone, The
free streamlines for both cones were obtained with the dissipation
model.

V. FURTHER APPLICATIONS

In the area of steady discontinuous flows, other applications of
the theory are possible. In some engineering problems, the added or
virtual masses of bodies at separated flow conditions -- for instance,
meteorological balloons and parachute canopies -- must be known to
determine their dynamical behavior. The theory yields these quanti-
ties readily, TFurthermore, rotational symmetric bodies can be con-
structed whose surfaces have a certain prescribed pressure distribution,
However, the given distribution must obey certain rules:in order not to
produce negative body radii. Into the same category falls the problem
of designing the optimum shape of the cowl of a rotational symmetric jet
intake, Another class of problems 1s the flow out of an orifice, jet
penetration, and cavity and jet flows under the influence of gravity
fields, The theory is directly applicable to some of the mentioned
problems; whereas, for certain others, slight modifications in the
boundary conditions have to be made.

VI. CONCLUSIONS

The flow about bodies of revolution with blunt bases separates and
forms a free streamline which divides the flow field into an outer flow
region and the wake region with zero velocities. 1In case of cavita-
tional flow, this free streamline is clearly visible in flow pictures.
For wake flows, the free streamline concept is merely an idealization
of the free shear layer,
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An integral equation method using singularities on the surface of
the body and the free streamline was applied to obtain solutions for
the mixed boundary-value problem. The problem contains two parameters
for the case of separation from a smooth body: the base pressure Py
and the separation point sp on the surface of the rigid body. With
the help of boundary layer theory the second parameter can be eliminated
as was proven with an example (laminar separation from a sphere), The
base pressure Pgp for wake flow must be obtained from experiment. For
cavitational flow, Pg is equal to the vapor pressure of the liquid.

An approximate procedure for the body at small angles of attack
analogous to the zero angle of attack case was developed in the second
part of the report. The geometric shape of the cavity as obtained in
the axial flow case was used for the angle of attack case. The sec-
tions of the wake are shifted to a position where the local normal
force on the wake is zero. The potential of the bent wake could be
reduced to that of a straight one after a series development and
linearization where the angle of attack distribution varies along
the boundary of the wake.

A number of examples are given, and theoretical and experimental
results were compared., Excellent to good agreement of drag, lift,
moment, and induced drag coefficients was achieved even at moderate
angles of attack. The excellent agreement between theory and experi-
ment proves further that the free streamline concept can be applied to
wake flows, as long as one is concerned with the forces on the rigid

body only.
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TABLE 1. COMPARISON OF EXACT AND APPROXIMATE
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6.1R61tent 8.184BE-01 0 R.1aY6k-ve 6.8731E~1" 8.10v6F-02 -4.19b66E-)1 K
7.0414F 7.2183E-01 0 -4.,27¢?F-u2 3.9455E-12 -4,5/2¢E-02 -4.0094E-y1 T
7.9585FeDt  8,2255E-0) ¢ -1.9352F-01 4.7118E-11 -1,5352E-01 -3.30176-01 n
8.H138F<n1 5.5642E-01 0 -?2.¢7Y9E-01 9.0317€-11 -2.779YE-01 ~-3.60RHE-J1 a
9.4916Feny 4.7345€-01 0 .-2.7n65€-01 3.4430€-11 -2.7065E-01 -3.4%05£-41 G
L_9.9907ﬁ-ﬁ1 4.3790E~01_ 0 -2.%0176-01 3./767E-11 - ‘

.PD99F 00 4.2130E-01 ~-1.2,058-10 =-7.YdU6E-01 -1.3582E=07 - R “1,4446F-18
LOSNBE 0p 3.886ZE~q1 -1.956RE-06 =3, 1145€-01 6.5472E-07 -5,1149€-01 =-3.23ME-ul -1,0857F-(>
+1186E 00  3.35872E-01 7.4785E-06 -3,2596E-01 -3.048BE~07 -3.2596E-01 -3.4G43E-ul 1.,4896F-r3
L2041¢€ 00 2.8311E-~g1 -9.459HE-06 -3.9312F-01 ~1.0377c-U7 -3.3312€-01 <-2,9731E~-uyl 5,076&4E-n9
L2958k un 2,87211E~01% 4.B464E-06 -3,3046F-01 7.0427E~u7 -3, 3u45E-01 -4, ,/49tk-]1 -1,74K3F-Q0
38136 on 1.9190E~01 -2.6565%-06 -3.€129€-11 -2.2207E-07 -3.2129E+01 -2,560)E-01 1.3467F-n8
L4491F 0Op  1.64%54E~01 -6.0235%-07 -3.loYsE-ul $.8246E~07 ~3.1095E-01 -2,48>51e-11 -4,2045F-a9
L4900 29 1.4978E~g1 L3424E-06 -3.08B2E-01 9. 635GE-UR -3.0SA/E-01 -2,4543F-ud 4,6214F-10
L513RE fn 1.4174E-01 L7794E-06  -2.¥9943E-01  2.4431E-U? -2,9945E-01 -2.3H.GR-)1 -1,0262F-1L
S5711F 60 1.2404E-01 L42s87E-06 -2.8834F-01 1.9477€6-087 -2,803%0E~01 =2.2569k-ul 2.5073F-09
L6660F ap  9.9205E-U% L2FN35-06  -2.,6918¢-01 -3 117SE-U8 -2,6918E-01 ~2.1¢$8E-01 9, 2B3BE-0v
.7857F gn  7.458B8E-QZ .5794¢-306 -2.947AF-01 5.1027E-07 -2.4476E-01 -2.00%9E-d1 ~1.392/f-5rn
.9142F pp  5.4755E-02 L9€98E-07 -2.1969F-N1 -1.6347E-0E& -2,1969YE-01 -~1.86278-)1 1.,21B7F-3b
LN339E 0y 4.y0941E-0Z L6505%E-07 -1.98U9E-(1 2.3761E-117 -1.980YE~01 -1.739Y8-31 =-1.0LC15FE-49
L128BE D) 3. 2461E-027 L67927E-37  -1.b238k-01  2.03BAE-0? -1.H23BE-01 -1.6515e-J1 2 ,5333€-17
L1861F g0 2.€197E€-02 L6027E-07  -1.7852F-01 1.466RE-07 -1,735¢E=-01 ~1.6014%-11 1,7414F-CY
L2725R¢ pa 2.5561E-02 LDE3ISFE-0R -1.6705¢-11 2.5343€-07 -1.6765FE-01 ~1.5fd5c-0l 1.1772¢-09
.3321F 00 1.9671E-02 L2785E-06 -1.22Y9E-01 3.3990€-U8 -1.5¢99E~01 -1.489¢8-491 9.8182¢8-09
.5084¢ 09 1.2772€-02 L170975-06 -1.310878-01 1.50158-97 -1.3187E-01 -1.367268-u1 ~5.2075%FE-10

.

-7307€ 00 7.4402€-03 L3298E-96  -1.10138E-01  3.3644E-07 -1.1018E-01 -1.2313k-u41 -1."9N4F-NA
L9697E 0N 4,.1824E-03 <-2.56448E-16 -9.1715E-0¢ 1.2784k~Jt -9.1719E-02 -1.1136E-41 1,4019F-%

L1915E 0A 2, 4486E.p3 ~%.5475E-08 -7.8078r-02 1.B/9KE=07 -7.%07BE-02 -1.uk11E-u0l ~?,0552E-09
.367BE 00 1,6018E-02 L911HE-NT  -6.9172E-02  1.468SE-U7 -6.917/E-02 -~9.2787E-02 1.5375€-09
LAT41E g1 1.2303E-03 -3.3FBBE-07 -6.44b67C-02 1.3465€-07 -6.4467E~02 -9.72z35E-12 1.9771€E-0¢%
.5496E 60 1 p3I20E.03 L9733F-037  -6.139AE-02  1.4894k-u7 -6.1396E-02 -B.v~94E-02 1,4915F-09
L7541+ g 388ZE.04 -5.26235-07 -5.404)1F-02 1.13%6E~-497 -3,404{E-02 -B.4/5E-42 3.9469F-09
L0980~ ¢ 3,(379F-.g4 -7.B8S36£~07 -4.435%3E-0c  1.5401L-97 -4.3393E-02 -7.3kelE-3¢ -2,7337t-"%
L5207+ 1 1, 3556E.04 .1797€-06  -3.233hre-02 1.2R70R-07 -3.9038E=02 -».78775-02 2.425%E-"%
LG792F 00  7.0414E-05 JIFOTE-QR -2 BISSE~Ce  1.035¢kE~u7  -2.8343E=04 -6,.3) 2 4,3055F-29
L40695 0n  4.8042E.05 L01378-96  -2,3502F~0¢ 1,383GEwu? -2,4510¢E~02 -H,4798E-:2 -3,143LF-11
L7458E 00 4,0386E-05 <-1.B72%F-07 -2, 0479E-02 1.2056E-07 -2.047YE-02 -5.1(09€--2 1,7158E-L9
L99513F 09 3.77928.¢5 L343KZ.D8  -1.802aE-02  1.1921E-47 -1.h925E-02 -~4.9°06F-32 1,5862E-09

.8152€-08 -1.0031F-02 1.19958-07 -1.8081E-02 ~4.78v9c-9¢ 1.5673F-09
LAZQ3E-07 -4 ,6Nn27F-02 1.3770E-07 -1.6027E-02 -~4,5328E-02 1.7067F-09
L2507E-Q7  -1,8364E-07 1.1346E-07 -1.8364E-02 -4.1174E-02 1.9342F-09
L1123E-07  -1.,0B46E-0¢ 1.1445E-07 -1,(3846E=02 =-3.70067€-y2 1,.3051F-09
LB?52E.07 -R,b5785kwttS  1,1124E~B7 -8B, 85/3E-DS ~-8.34B0E-02 1.67531F-09Y
L2134E-07 -7 ,45%4F~nS  1.09u2E-07 -7,4%44E.03 ~3.0795E-92 2,0405E-09
.2B05E-07 -6.5651E-08 1.31208E-07 -6.5691E~03 ~2.dR12E-02 1.6173F-09
LAfG1E-07 -6.1030E~08 1.0927E-07 -6,1030E~08. ~2,7/7RE-y2 1.7064E-09
L7Y53E-07 -5.7475€-08 L.UBUSE~UT -5.7475E+03 -2.6%$v0k£-02 1,7777€-09
L611AE-06 -4, 8636E~03 1.2083E~07 -4,B656E-03 -2.4796E-02 -6.502BE-09
LBSB1E-05 -3.789%3E-05 -L1.5042E~uf -3.7890E-D3 -2.1809E-02 1.2023F-07
.2091E-04 -2,8741E~03 B,9940E~07 -2.8759E~03 ~1.9069E-U2 ~6,640BE-07
.5184E-03 -2.2170E-03 -2.5667E~9¢ -2.0114E+03 ~1.6753£-02 1.6969F-06
,2542€-03 -1,7878E~03  4.2839E~06 1.798YE-05 <-1.35059E-12 ~1,8996F-06
.0186E-03 -l.’SOQE-ﬂs -2.251{&-06 ~1.5199E-08 ~1.3%21g-02 6.2966F-07
L, 6276E-02 -1.4008E~03 S5.6754E.07 -1.4236E~08 -1.3328£-02 8.‘0155-08*

0794F G693, 6593E-05
.AN6BF 0N 3. 4747E8.25
.9489F 0a  3,3702&-0%
-6331E 00 3,2730E-05
«3668E yn 3.1596E.-05
.0510E np  3.1192E-05
.5933E ar 3,0951€.05
L9205t o 3,0828E.05
1.0198F o4 J.0744E-05
1.1016E @1 3.0672€.08
1.2372E 03 3,0791E-05
1.4082€ a1t 3, 1392E-05
1.5917% 01 3.280LE-05
1.7627€ o1 4,.0520E-05
1.8983¢ ¢ 2.8652E-05
1.9801E 01 1.04568E.04
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TABLE 1

(continued)

The Exact and Approximate Geometric Functions of the Half-Body

[ e

-1.1392E-01
-2.6117€-01
-4.3097€-01
-5.8303E-01
-6.9017E~41
-7.4958E-01
-7.7460E-01
-7.83V1E-01
-7.9749E-01
-8.0458E-01
-7.8984E~01
~7.5121E-01
-7.0042€6-01
-6, 9889E-01
6.2417E-01|
6 v6b6E-u1]
F5.790dE-01
ho,2882E-01
F4.6729E-01
4.0522E-01
r3.9201E-91
F3.1342E-01
F2.918VE-01
L2, /7996E-01
F2.5857E-01
F2.1474€-01
F1./73850E-01
F1.8766E-01
F1.1085E~01
9.34U4E-02
-8.4359E-02
~7.8/94E-02
F6.6149E-02
F4.9789E-02
-3.5106E-02
-2.4458E-02
~1.7702E-02
ﬁl,seaee-uz
1.1999€-02
-1.0922E6-02
~8.6177£-03
-5.9296%-03
F3.8085E-03
F2.4428E-03
F1.6646E-03
F1.25126-03
F1.0633E-03
FY.8719€-04
L7.74716-04
F5.4697E U4
F3.6243€-04
F2.4069E-04
F1,6886E-04
F1.2969E-04
1.1164E-04
F9.9459E-¢5
F7,3069E-05
F4,5410E-05
r2.6232E-95
F1.5426E-05
L9,8522E-06
F7.1003€E-06
F5.7561E-06

Exact:
Parallel Flow + Source
S X R RP
9.9275E-03(|7.3914E-05| 9.9271E-03| 9.9988E-01
%.0833E-0211.9563€-05/5.0784€-02] 9.9705E~U1
1.1861€=-01(11.0503E-02] 1.1799€-01] 9.8434E-01
2.0414E-01[[3.0879E.02[ 2.0101E-01} 9.5458E-01
2.9585E«ny s 380BE-02| 2.8652€-n1l 9.0781E-01
3.8138E-01(1.04136-01|3.6189E-01| 8.5311E-01
4.4916E-0111.4200E-01)/ 4.1808EF-01] B.U418E-01
4.9007E-01[11.6714E-01) 4.5034€-01| 7.7298E-01
5.0992E-011.7992E-01] 4.6553E-01{ 7.5751€E-01
5.5083E-01§7.0737E-01] 4.9586€-01] 7.2514E-01
6.1861Ee(1 ]72.5589E-01|5.4217€-01] 6.7074E-01
7.0414E-01(3.21R1F-01[5.9760E-01] 6.02385€-01
7.9585E-01 |3.9735E-01] 6.4558E-01] 5.3156E-91
8.8138E-014./7139E-01| 6.9235E-01] 4.6941E-01
9.4916F-01{5.3204F-01]7.2260E-01| 4.2345€E-01
9.9007€001]5.6934€-01f7.353d€-01f 3.9734E-01
1.0099€ on 5.8762€-01]7.4715€-01] 3.8510E-01]
1.0508E 0n 6.2557F-01|7.6240€-01] 3.60/9E-01
1.1186E 0nll6,8927E.01| 7.8556E-01] 3.232¢E-u1
1.2041E 00,7.7081E-01]8.1135€-01} 2.8071E-01
1.7958E on |A.5936E-01{8.3523€-01| 2.4081E-01}
1.3B13E ¢n|[9.4270F.01| 8.%5441E-01] 2.0852E-01
1.4491E 0onf1.0091F 00{8.6777€-01 1.8604E~01
1.4900€ 00|1.0493€E 00| 8,7512F-01{1./367€~01
1.5138E Nnj1.077BE 00| 8.7518E-01)1.6686E-0u1
1.5711& 00 |1.1294F 00| 8.BE29E-01|1.5162E-01
1.6660€ 0n}f1.2233E 00| 9.0160E-01|1.2954E-01
1.7857€ oni1,.3422€ 00| 9.1569€E~01]1.0694E-01
1.9142€ 00(|1.4700F 00| 9.2605€-01|8.6823E-02
2.0339E 00 (1.5894E 00| 9.3754€-01|7.2117€-02
2.12BBE 00 ,31.6841F D0 9.4391E-D1] 6.2497E-D2
2.1B61E 0n"1.7412E 00| 9.4734€-01]|5.7423€-y2
2.2258E 0n'1.7809E 00)9.4556E-01{5.9191E-uz
2.3321€ 00r1,B871E 00| 9.5490E-01] 4.6550€-02
2.5084E 0nll2,0632E 00]9.6718€6-01|3.6555E-02
2.7307€ 00)?.2854E 00| 9.6523€6-01]2.7426€-02
2.9692E 0ni?,5238E 90| 9.7491€-01]2.0576E-02
3.1915€ 002.7462€E 00| 9.7€695E-01|1.6022E-02
3.3678E 00)2.9224€ 00[9.8157E-01]1.3290E-02
3.4741E 000({3.0287€ 00| 9.8286E-01{ 1.1925E-02)
3.5496E onus.:oazs 00/9.8273€E-01{1.1065E-0?
3.7541E 0n¥3.3087€ 00 9.8573€E-0119.1010E-03
4.0930t (nlx.6476E 0ol 9.8F44€-01l6.7356€E-02
4.5207€ 00h44.n752E 0U|9.9086E-01; 4./674E-02
4.9792E 0n[4,5338F 00,9.9272E-01] 3,9130E-us
5.4069E 0nil4,9614€ 00| 9.9298E-01/2,5721E-03
$.7458E 00}5.3003F 00 9.9477E-01|2.0895E-02
5.9503€ 0n[5,5049E 00| 9.9517E-01)1.85465E.03
6.0794E gny5. 63398 00| 7.9540E-01{2.7245E-02
6.4066E 00[5,90612E 00| 9.9592E-01]1.4439E-92
6.9489E 0n|6,.5034F 00]9.9€660E-01|1.0981E-02
7.6331E 00)7.1876E 00| 9.9725E-01(8.0214€-04
B.3668E 0n|[7,9214F 00]9.9775E-01|5.9146E-04
9.0510E 00 [B,6056E 00[9.9611E-01[4.5640E-04
9.5933€ 00[9.147B€ 00[9.9€633E-01|3.7709E-04
9.9205E 0nj9.4751€ 00| 9.9€45€-01|3.,3792E-04
1.0198E 01§9.7530E 00| 9.9E54E-01|{3.U879E~04
1.1016E 01(),0571E 01| 9.9E76E-01|2,4028E-04
1.2372E 011.1926E 01| 9.9503E-01|1.6518E-04
1.4082E 01[1,3637F 01{9,9526E-01/1,U907E-04
1.5917E 011,.5471€ 01]9.9543E-0117.3876E-05
1.7627€ p11,7182E 01]9,9953E-01)5.3488€-05
1.8983E 01 j1,8537€ 01|9.9560E-01|4.2353E-0%
1.9801€ 01[1,9355E 01[9.9563€-01|3.7094E-05

F2.2333E-02]

Approximate Numerical Procedure:
(The region s =z 1 is defined as

| wake.,) N _
X R AP RP2

7. 3%71¢F 15[ 9. 9271 E-03|9.9946E-U1F7.2388E-0&
1.93r8F.n3| 5, 0784F-02]Y.97u5E-d2F1.18Y2E~D1
1.05036-02}1.1799E-01[9.8484E-01+2.4117E-0)1
3.0829E-02{2.0101E-01|9.595€E-01]-4.3097€-01
6.300bE-02]2,8652F-01]|9.0781E-01]5,8803E~01
1.04132F-0113.6149€E-01[b6.5311E-11}6.9017E-ul
1.4200€-01[4,163RE-01|b.y418E-U1F7,4958E-U2
1.6714E.101|4.5034E~01{7.7298E-u1F7,7460E-01
1.790,E-01] 4.6593E-061[7.5751€-02F7.8391€~0Y
2.0737E-01]4.956AE-01]7.2514E~01}7.9749E-01
2.5589E-01]5.434,7E-061({6.7074E-0:1B8.045CE-31
J. 21 E-01|%.97A0E-N1|6.0235E-01r7.8564F~-03
3.9735€E.0116.49682-01]5,3156E-01F7.91/1E-01
4. 7T139E-01]16.92357-01[4.,6941E-01F7.00426-11
§.3¢04E_01]7.2265F-01]4.2346E-01F6.5345E-41
5,69245.n1]7,3¢56E-01] 3.9734E-)3iF6,246178-3

62E-01]7.47155-01] 3,850PE.01}6,0745€-01
6.2557E-01]7 A2410E-01| 3. 0U2RE-01F5,7895c-01
6.8927B_01]|7.85565-01]3.2225€-01F5,2802E-21
7.7081F-u1|B.1135E-01|2.8070E-71F4.6/8 21
8. 5936FE 1|8, 8523E-01]2.4081E-01F4, 9917801
9.4270k-01|B.5¢uiE- 2.0R52k-u3l-3.52 3E-n1
1.00Q1E NDJB.6777F-061]1.60602k-01F3, 1304F- a1
1.0493E 00]8.7522€-01]1.73%€E-~11F2.
1,0788E uvi{B.791nE-r1j1.r685E-13L2. B001E- 12
1.12946 00| 8.88296-01|1.5161E-01[2.536)c-01
1 .2233F n0}%. 016 F-01[1.2%23E-11-2_1466E-71
1.34228 0D Y.196AE-N1]1.0655E-02]-1,7352-041
1.4700F 00| 9.2F05E-C1, &.06898k-JzF1.3757E-u1
1.5694F (0 375¢E-01}7.¢147E-02F1.1087E-u1
1.6041F PN} 9. 4391E-01,6.7520E-02F9,3521E-92
1.74126 2y 9.475%E-u:'5.7438E-02L5.448€E-J2
1.78095 07|09 S6E-01]9.4240E-UFF7,85268-02
1.8871E 03] 9.5461€-01( 4.6523E-0zF6,61576-02
2.0632E 00| 9.62196-11,3.6571E-02F4.9697E-12
2.2854E 0|9 . 697HE~0112.7467E-02F3.50e5€-12
2.5238F DY) V. 7493C-01|2.(he7k~ul2,443PE-y2
2.7462E Ny|9.7HYBE-N1|1.6072E-02p1,7726E-12
2.9224E 00]9.61575-01|1.333€E-UZF1.38/1E-02
3.0287E€ 230[9.8291E-03;1.1967E-0:F1,2036E-02
3.1042E 00{9.6"73E-01|1.11!12E-u7FF1.0552c-02
3.3087E 90, 9.£%04F-01]9.1375€-03%-8.62.8E-03
3.6476C 00} 9.F85:8-71,€6.7715k- 5 vI9FE-3
4.0752% 00 9.901,“ 01, 4.c058E-03F3.651E-:3
4.5338% 00| 0,0702E-01|3.6515E-03F2.4900E-038
4.9614E 20 9.94315-01 2.00RTE-(AF1.66m2E~03
5.3003F 90]Y.9491E-01 2.1243E-038F1,2543:2-.3
5.50439E 00} 0.9537E-01) 1.5R92E-03F 1. yE09E-03
S.6339€ 70, 9.9555€-01,1.73842-0375.8932E-0%
5.96128 00 9.966HE-01‘1.07725-03-7.7c44E-34
6.5034E (1] 9, 9¢7HE-(L!1.1307E-02F5.4826E-04
7.1876F N[ 9.9744E-0110.339€CE-J4F3.6334E-14
7.92149E 00| 9, 9797E-G1|6.2270E-0¢F2.4138/E-04
8.6056F NN| Y. 9FS9E-01[4.8722E-06F1.6935E-04
9.1478¢ Gyl 9. urovE-gil4.n771E-04F1,30068-94
9.47€3F 90 9.9F72E-01| T.604ZE-ver1.1196E-24
9.7330E 00| 9.9FH2E-01[3.0921E-2419.9¢673E-0>
1..0S71F 01{ 9.9506E~-01|2.7068E-04F7 3U73E-15
1.1975F 01| 9.993RE-01| 1.¥563E-v4ra, 4531E-15
1.3637F 01] 9.9966E-C1|1.4128E-u4}F2,6728E~05
1.5471F 01; 9,99ABE-01} 1.0227E-0¢}1,70561E-05
1,7182F 01] 1.0000E 00| 1.0120E-04}1,4605E-05
1.8527F (1] 1.0001E 06] 6.9840E-05]| 2,3193€E-05
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THE PRESSURE COEFFICIENT AND THE GEOMETRY

OF THE CAVITY BEHIND A DISK FOR Cpp 0

LEGEND:

S = arc length CUR = curvature

X = x-coordinate Q = source strength

R = wake radius (r(s)) VN = remaining normal velocity

RP = dr/ds on the streamline

RP2 = d2r/ds2 cP pressure coefficient
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TABLE 3. CONE AND SPHERE DRAG COEFFICIENTS

Cone Drag Coefficients : *(Riabouch. Mod.)
Cpp 197 -.05 -.1 ~.2 |-.2235 -.3 -.41 - -.6
B = 15° .1460 .2014
45° .5042 .56941.6360
63.4°].6679

90° |.8238|.8664|.9092|.9955|1.0144%|1.0822 i'i;Z;* 1.3455

Sphere Drag Coefficients

c | .o —2 | -as

yg = 52.32° 3027
54.04° | .3063
55.75° | .3084
57.48° | .3090
63.03° | .3090
80° .3076 | .4909
82° .2907 | .4797




TABLE 4.

THE APPROXIMATE CALCULATION
OF THE LAMINAR SEPARATION POINT FROM A SPHERE

Uy

s l Vg Calculated Error
.027423 | .055215 l .040701 .2628
.140419 | .203833 : .207253 -.0167
.327660 | .466285 | 471754 -.0117
.563907 | .769968  .769153 .0010
.817262 | 1.040140 § 1.032990 .0068

1.053509 | 1.218332 | 1.221146 -.0023
1.240750 | 1.289778 1.300160 -.0080
1.353746 | 1.285990 .  1.285045 .0007
1.382162 | 1.274379 |  1.269342 . 5042
1.386253 | 1.272036 |  1.266597 5042
1.393031 | 1.267721 | 1.261764 . 0046
1.401584 | 1.261152 1.255147 .0047
1.410755 | 1.252393 1.247384 .0039
1.419308 | 1.241234 1.239498 .0013
1.426086 | 1.227846 1.232790 -, 0040
| 1.430177 | 1.212065 1.228540 | -.0135
= 1.4845, T3 = -.4385, TZ = .2094, u, = -.0706

The determination equation for the separation point is:

1 -

Solution:

5B

2
.68325B

1.342,

, 4 _
+ .46665B

?g = 77°.

6:
.21988B 0.



(a) The Coordinate System and the Distribution of Points

..
X
(b) Representation of Two Lines with Vy = 0 Along F:

Figure 1. Notations and Schematic of Cavity or Wake Flow
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(¢c) The Bent Wake and Additional Notations

Figure 1. (Continued)
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(b) Flow About the 10-Degree Inclined Cone

Figure 2. The Convergence of the Numerical Procedure.

Representation of the First Iteration Steps for A 45-Degree Cone
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Figure 3. The Pressure Distribution Along the Disk in Normal Flow

For Cpg = 0 and A Drag Coefficient of Cj = L824
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The Free Streamline in the Neighborhood of sy

The Free Streamline In Plane and Axisymmetric Flow
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(b) The Asymptotic Representation of the Curvature and the Second Derivative of the Radius of
the Free Streamline in the Vicinity of the Separation Point of the Disk

Figure 4, (Continued)
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(b) The Pressure Coefficient on the Front Side of the Disk

Figure 5. The Geometry of the Cavity and the Pressure Distribution

of the Disk (Riabouchinsky Model). C, = 1.015
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Figure 6. The Drag Coefficient of Different Cones as A Function of The
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Figure 10, Schematic Representation of the

Separation Points from a Sphere

'\0'\ Curvature -xl(s) —— Asymptotes

O Calculgied
Points
S ~N

b L \
x(s) h‘gha
r"(s)T N
O
O
N

x (s) 0, 80
9ols) b, ».8847
b

¢, &0
n Cz* 2.2093
g0
-~ oo L q,(s)
S5 \O\\ w-'"o\

/
]

(s-sg)

Figure 11. The Free Streamline in the Tmmediate Vicinity of

the Smooth Separation Point of A Sphere for Cpg = 0
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Figure 18, The Drag Coefficient and the Separation Angle of A

Sphere as A Function of the Base Pressure [24]
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for Different Base Pressures with ¢ as Parameter [25]
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(a) The Inclined Come, & = 10 Degrees

(b) The Axisymmetric Flow About A Cone

Figure 26, The Shadowgraph of the Flow About A 50-Degree Cone
With A Superimposed Streamline for Cpg = -.4 (Dissipation Model)
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(a) The Inclined Cone, o = 10 Degrees

(b) The Axisymmetric Flow About the Cone

Figure 27. The Shadowgraph of the Flow About A 15-Degree Cone

with A Superimposed Streamline for CP = -,32
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APPENDIX A
THE EVALUATION OF THE ELLIPTIC INTEGRALS

In the evaluation of the surface integrals, we often encounter the
integral expressions

/2
F_(kZ) = <—1>“\/p cos_(209) __ g4, (A.1)
n [1-k®sin @]1/2 @

7/ 2
G (k2) = (—1>“b/\ cos (@) _ 4, (A.2)

[1-k®sin @]3/2

For the nominator we choose the expansion

n _ 2n -
cos (2ng) = coszn¢ - < 9 :) sinZp cosz(n l)m + < 4 >Sin4@ Cosz(n 2)@ s

(A.3)

which, after integration, yields for the expression (A.1) the terms

2
Fo(ke) = K(k%®) - Go(k2) - %— [G,(k®) + Go(kz)] (A. &)

and

Z

2
L EE) = - () + 5 [6(K®) + Gy (k)]

2
Fi(k®) = Gz - 1) K(&KZ) -
For the elliptic integral (A.2), we obtain for n = 0, 1, and 2, finally:

G, (k3) = E(k2)/k'Z,

Gy (kB) = kiz[lif'; E(k?) - 2K(k2)] . (A.5)

B} 2 .
Go(k?) = ki,; H1+k' 2+ 1—3‘7} E(k2) - JLZk'2+6(l+k'2)+2} K(kZ)J

where k'2 =1 - k?.
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APPENDIX B

The Asymptotic Development of the Integrals

Tn the vicinity of s — g, the modulus kZ approaches unity, and
the elliptic integrals have for k'2 < .5 the series expansion

'® 63 ,a 925 s ! 2
2y = _ & _ 22 g _ ' _ '
K (k2) Z TR =230 © ... + 1n (&/k") [1+ x
9 44 25 , 6
+64k +_256k +...:|
(B.1)
K'Z 39 4 90 6 (k'2 3 .o
2 = P S A 1 .- 1 - 1 5 - [}
E(®) = 1 - 55— - 2= k =5 k ..+ 1n(4/k )L S+ k
+;|L.578k'6+ . } 3
where k'2 =1 - k2

We are able now to determine the first terms of Gp(k®) with
this series expansion:

Go (k%) =#‘L1 —%k'z - %f:k"" - gi;—ék'ﬁ ee. + 1n(4/k") @ Kk'Z
+%k'4+%k'6+ >

G1(k%) =-k'1—2[1 +%k'2 +%21?5'k'4 + 2920 k€ 4 L. - In(4/KP) <% Kk'®
+ %% k' %%% k' + ...\ (B.2)

J

(equation (B.2) continued on next page)
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Ga(k®) = —— 1 4 %% K24 l%gl Ll 3%%%2 k4L

k' o
15 ,2 285 .4 3585 . .g N\

- ! —_ 1 == 1 _— '
In(4/k") > k + 16 k + 178 k + .../.

In general, one can represent the elliptic integrals for k'“ = .5 by
the summation formulas

O 2y 1) N
K(k%) = In(4/k") ZJ <;,V, II (% + u)2> -‘ZJ <%%§ + E%Z

v=1 n=0 v=1
(v-1) 1 2V
2 1 5k
R TWEEY I =+
i (2v-1)2v> o 2T
and (8.3)

e k'2v (v-1) 1 1 1 2
E(k2)=ln(4/k')L\J(v—_l)'—v" I (—§+ M)(§+H)>+1 -Zk'
5 Ve =0
3; 2 2 2 1
"/ <%T§ T3E Tt et ey T (2v-1)2£>
V=2
k12 (V_l)
(v-l)'v' o ¢ 2 + ,J')(Z + H)
u=0

The previous equations are not suited for the region of very small k2.
The summation formulas for determining K(kZ) and E(k®) are therefore

different:
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[o0]
—= 2V (V—].) r
k 1 [
K(ka) =12£[1+2 N I (§+H)2:}=%.1+C1k2+c2k4+"‘:}
and (B.4)
2y (v-1) r
T l_ v ok 1 1
ERS) =5 [1+) o= I (3+wE+ H)J=§,1+d1k2+d2k4+ J
[ V=-]]. ) u=0 . =

After the series have been determined, we insert the coefficients of
K(k®) and E(k®) into the equation (A.5) and obtain for the region
k% £ .5

€500 = g | (2dxCa] - (7203 DK2 + (2[d57051-[4-20 DK% + ... |

r— "

(B.5)

K'%62(k®) = 7 (16[d4-C.]-8[2d5-3C5] + dp-8Ca)k* + (16[dg-Cs]

—

"8[2d4—304] + d3"8C3)kG + ...J .

The Asymptotic Development of the Velocities for Small Cone Angles

A

For very small cone angles (B 15°), the series approxima-
tions derived in chapter IV.2, are not very well suited for the deter-
mination of the velocity components. For instance, the logarithmic
terms of the velocity components become very large for small r(s);
whereas, f(s,o) disappears rather rapidly with increasing g. A special
series approximation was therefore advisable for small cone angles,

We set again ¢ = g-s. For a cone, the following relations
hold: r =7t's, p=r1r'c, and x = x's, £t = x'0.
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The elliptic modulus k'Z becomes now

2 _ B2+ ()2 2 5.6)

(x-£)2 + (xr+p)2  €>+4r'Zs(ste) °’

k

which is inserted into (B.l) and with (A.5), we obtain finally

2 1 '
oy . €tHhr's(s+e) 1 1 8r's
Go(k ) = = A + 5 In TET— .
2 [
e“t4r's(s+e) 7 3 8r's
2y — L _ 2
G1(k=) = pe= + A > In TZT—'.
2, 1 1
2y . etar's (s+e) 63 _ 15 8r's
G2(k ) =~ 62 + —4 —2 in -l?’— .

For simplicity, we retain the argument of the logarithmic terms,.

We now introduce these expressions into the integrand of the
uy-velocity component and obtain the series

1] 1 1 1 1 1
£(s,0)y = magle) |2EEL 4 2l s] +q!(s) EXS (B.7)
n Lyl/2 ext/2 n yi/2
where X = ¢ + 4r'2s(s+e). In this expansion, all terms which were pro-

portional to ¢ were dropped. The integral with the substitution
2
= - 2 1
Xy = (sE s)< + 4r ssp
finally becomes

2
- ' 1/2
sE s+2r s+XE
'28

1 . x M.,
P f(s,0), do = - P qn(s) ;2r 1n
“ 2r

(equation (B.8) continued on next page)




r"(sE+s)--)<E/2
I(SE-S)(l—r') |

+ 1n (B.8)

sE—s+2r'zs+XE/2|}:}
> .

] + q;(s) 2r's 1n
2r' s

Next, we develop the vp-component into a series

' q'(s)s
£(s,0), = -2r'® {é (s) { s _ Ly _ 287 <}+2n-1n 8r S>} A
v SR PN N v VA el X

(B.9)

The integration of this expression yields

S_-S

E , o
_l. £ do = ;L.( 'l Ir 5?Ei§) XE'
27 (s,0)y do =37 an(s) ERNCIEEDGRED
~8

|2 o
+ 20! 7in | | + R 1 + 2n-1n Ts -s]
2r' % x'Z JXE \SE'S /
- 124 _
-t (o 8] - L
N |s ] <2 or! 2g
1] _ i '2 )
T ) IR T g st ¥
x'2 (SE'S)(l-r') a o

For the circumferential velocity component w_, we obtain

n’

12 1 N\
JOCHERAERS {81'—85 (n 2 - 2 H , (B.11)

[X]S/Z
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and integrating this term, we can write

S_-8

q_(s)r -s+2r'%s
51_ f(s,0), do = n 2 ' 22 {SE v<ln Br’s _ 2>
T 2 |yt @ [sE-s|

-8

s.-s+2r's +\/XE

E

/ 1
- (r'2—x'2) Kln%i—2>+ln | T —|
r' s
rv(sE+s) —\/X__El}:l

l(SE-S)(I-r')

+ r' 1n (B.12)

With the aid of the preceding expansion for the perturbation velocities,
we obtain the normal component Vy(s) as

———L——-<}n ?5%5 - (1+2n)>] . (B.13)

£(s,0)y =.ba, (9)r' o Loz N Te

The intesral is

S_-8
2
) q (s)y rs-s+2r'"s , ,
1 n E 8r's
7 f(s,o}v do = 7o — '\1r1 ’S —s[ - (l+2n)>
-8 N ‘ XE E
2 —
N - '
2 2./ 8r's SpTotET SN
- (r'7-x"%) ' 1In - (1+2n) ) + 1n — |
N s y 2r's
r'(sE-s) - N X
1
+ r'ln |<SE_S)(1_r.) IJ . (B.14)
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Similar expressions for the tangential velocity Vp(s) are

[ r 12 2 T
£(s,0)y = -2r'Hq (s) 2=+ L 42 ST (14950, M L al(s)s
’ VT qn \ X s
-

Jx  xale el JX -

SE"S
n - s _-s+2r'"s +\/—X;:
L (s,0)y do = - 2= q.(s) 42r'1In | ;
2n " 2y 0 2r's
-S

r!(s_+s) -~ v S -s+2r' s
E XE L3 B <l+2n-ln *l—r_: >

s -s+2r'°s + ~
- (x'%-x'%) (142n-1n Tr]S>J S I g B XE|
. x! 2¢' %g

' 2 r'(s -s) =~

(s -s)(l )

o
s_-s+2r' s +NX
|}-+ 2r! sq (s) 1n | E > E]J

2r' s

(B.15)

After a closer inspection of these terms, we notice that they are not
suited for determining the velocities around a blunt cone (disk), since
r' -1 and x' 0.



APPENDIX C
THE COORD INATE TRANSFORMATION OF THE VELOCITIES

For the tangential and normal velocity components on a streamline,
we find the following relations:

<
|

T = (I+u)x' - vor' (c.1)

and

Vg = -(Q+u )’ + vox'. (C.2)

Certain relationships exist between the derivatives of the streamline
and its curvature:

K=x"t" - ¢r'x" = r'"/x' = -x"/¢!' (c.3)
and

x'x" + r'r" = 0. (C.4)

1f we differentiate the normal velocity with respect to the arc length
of a line on which Vy does not disappear, we obtain

dv. du dv

_N.=___cll_ " |_0_ 1"
Is s F (1+uo)r + x Is + v x". (C.5)

With (C.3) and (C.4) the relation
(1+uo)r” = (Ll+ugy)x'«; v.x" = -v r'k (C.6)

is obtained. 1Inserting,this relation ‘into (C.5) and expressing the
total differentials by the partial one,

du du
du -~ 0 , ., _©O
s - on x' + S r' (C.7)
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and

dv BVO avo

92 _ 9 -9
s ox X Tty T

yields finally, with Qugy/dr = Jvo/ox,

dv du ou du
N 1.1 1 1
s e (52 50wt 52 (c.8)

Differentiating equation (C.l), we obtain, with the same relations,
the change of the tangential equation along s:

dVT o Suo auo BVO
—_— = 1 R | . T Y
Is x — 2x'r S +r 5 (C.9)

Very simple relations are obtained after a coordinate transformation
for equations (C.8) and (C.9). A rectangular coofdinate system 7 and
v has its origin at the separation point sg. The T-coordinate is
orientated tangentially, and the V-coordinate is normal to the free
streamline, The normal Vv is positive if it points to the outside flow
field (or to the left of the streamline),

The transformation equation is
(x—xB) =x'T - 'y (r—rB) =r'7T + x'J. (C.10)

The derivatives of the velocity potential @(x,r) with respect to
the coordinates T and y are

o0 _ Opox . O@or
0T  OxdT  droT

and (c.11)

3o _ dodx , 39dr
3V oxdv  drdv
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If we replace in equation (C.1ll) the partial derivatives by the total
derivatives of the streamline,

By Eoopy EHoy Eog, (C.12)

ot ot ov ov

we will obtain the partial derivative of the potential with respect to
the body coordinates x and r:

aﬂ=§52x' -—agr' (C-13)
ox N3 3

and

§9=aﬂx' +Q(Qr'
T >%

The next higher derivatives are

@:X'Zﬁ_z‘r'x'ﬁ_'_r'za_z@

9% 372 3V 372
p
%z%; = r'x' k:fz - ifé) + :?g_ (x'-r' (C.14)
T Vv VoT

%E% =p'? o + 2r'x! o +x'Z o .
* 372 dTIV 2

The change of the normal velocity along the arc length is obtained by
inserting these expressions into equations (C.8) and (C.9):

2
Ny =L (c.15)
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If the general line is a streamline, then the conditions Vy = 0 and
dVy/ds = 0 hold, and equation (C.15) becomes

2
VK=§:%. (C.16)
ovoT
The change of the tangential velocity along s becomes an identity:
dvp/ds = d%p/dsZ.

We consider now the tangential and normal velocity of the body in
normal flow. The tangential velocity is
VTl = ux' + (o + vy)r', (C.17)
and the normal velocity can be written as

VNl = ~u;r' + (@ + vy)x'. (C.18)

The total derivative of the normal velocity with respect to s is with
the relations mentioned above

dv
N do o
—1y LA 900
ds VTJ_K ds X Bnat : (C‘lg)

The third term on the left side vanishes if the angle of attack ¢ is
constant along the body,
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APPENDIX D
THE ERROR INTRODUCED BY NEGLECTING THE INFINITE WAKE

In all cases in which we employ models with an infinite wake and
truncate the wake a finite distance downstream of the separation point
at sy we introduce an error. This error will definitely increase with
decreasing distance of the end point sy from the separation point sg.
However, since we specify the pressure distribution along the free
streamline, the error will not influence the velocity distribution to
any extent on the forebody and therefore the drag of the body; but it
will influence the position of the free streamline, the source strength
qn(s), the perturbation potential, and in the normal flow case, the
angle of attack distribution.

The estimation of the magnitude of the error is our next goal.
Some simplifying assumptions are made for this purpose:

(a) The wake downstream of the truncation point Sg is cylindrical,

p = rE = const,

and therefore,

o £ + const.

(b) The source strength along the truncated wake attenuates
according to a simple law

qp (x) = q,(xp) (XE/X)k (D.1)

where k is not necessarily an integer,

The assumption (a) is exact for the dissipation model. For the
Helmholtz model where Vg(s) = 1 on I'p, (a) is only an approximation. With
respect to assumption (b), we should mention that Levinson determined
in reference 17 the asymptotic shape of I, as

* [
r = zI%—;%g;z Ll - %.lﬂﬁ%ﬁ_ﬁl + 0(1/1n x)] s (D.2)
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where C* represents a constant which can be brought into a relation
with the drag of the body. For slender bodies, we can assume that

ar c* 1 I 1
q X) =—= - Ll -—_—+ ...] . (0.3)
° dx 5 Jx (n x)t/* 2(1n x)1/2

The source distribution qo(x) vanishes with about I/Jk. On the other
hand, we notice, after a close inspection of table 1, that the exponent
for a cylindrical wake is k = 8.

In all cases, for the potential as well as for the velocity com-~
ponent, an integral of the form

[0}
qu(g)k(x,é) dg
*E
must be calculated, 1In order to carry out the integration along a

finite distance, the integral boundaries have to be subjected to a
transformation, We therefore set

n=-1§-; %§=-dn; €2=;]1§; nE=$ (D.4)
and
aZ = (r+rg)@ + %2,
X = n%a® - 2xq + 1, (D.5)

XE= T]Eaz - ZXT]E + 1,

With these substitutions, we obtain the expression

1 1
(£-x)% + (r+rg)® = e [n®a® - 2xn + 1] - % (D.6)
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and the elliptic modulus becomes

2
4rrEn

kZ = = 4rr_n3/X. ®.7)
nzaz - 2Xn + 1 E

We start with the evaluation of the potential, For the model with
an infinite wake the perturbation potential is

s

Lt 20 F, (k2)do
() = - 5= | a (@)
" T 62 + (rp)2] 2
k N
- :Efg_gﬁffgl /NE k-2 EEEEiZ d (D.8)
7 ul Xl/2 K ’

The corresponding expressions for the perturbation velocities are

s
N O A 20(x-£) G_(k?)
un(s)’= -t o qn(o) — do
B [(x=£)% + (r+p)®]1/2
q, (xp)T xn 2 1) G (k3)
+ nﬁﬁl— f — / 2 dT]- (D.9)
3/ 2
o X
°E
NG 20[xG, (k2)-p (G, , ()46, _, (3) )/ 2] ;
Vn(s) - 2 + ZT( qn(d) Tt T - ) o -g '3/2 0
o [(x-£)% + (x+0)7]
| kTR R e (B, (6, (k)46 (k2))/2)
, InCwTErE [ (60 (=75 By, (D¥65 ;
b X3/2 e
© (D.10)
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]
026, (-G, ()

1
0w =% [ —
I e A R M

o]

do

! bl
a,, (e )xExg \/mE 1 e, @) -6, (2)

n+1
+ - Y dn. (D.11)
X

(o]

The additional tangential velocity component AVp = Aunx' + tvpr' s

@ xyr e NE
_ n E EE
AVT(S) - ELS f

o)

1 Genm1x' 6 (4 e [reg (62 -x (6, | (46 (k2)) /2] )
i i - e

Xs/z
(D.12)

The additional normal velocity component AVy = -Aunr' + Awnx’,
which is induced by the neglected part of the wake, is given as

q._ (x.)T xk e
_ MmYE’"E"E
AVN(S) DR f

o

-1t e (624 R [x6 (kB)-x (6, | (B)H6__ | (2))/2]
B onb C omer 4.

’ XE/ 727
(D.13)

We replace the elliptical integrals in equations (D.8) through
(D.13) by their respective series from appendix B and consider only

the first few significant terms:
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2
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_ = 3
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=y _ (3 2 .
Gl(k)'—§<§k +..->
G (k) =§ (O + ...).

If we assume that the expression for X is only a little different than
unity (X = 1), we can develop the expression.for X into a series, We
obtain

1 zl-%(a2n2)+xn+...
Xl/2
1 3 2 2
~ 1 - 7 (@*n%) + 3xq + ... . (D.15)
X3/2

We determine the additional normal velocity AVy(s) on [5 in the vicinity
of the separation point by inserting the expansions (D.14) and (D.15)
into (D.13). The most important term under the integral is then

n

E
q, (xg)rpx K
2V, (5) ziiﬂlg f Z '+ Ix'r-r'xIn) (1 + 3xn) dn. (D.16)

(o]

The integration of this expression and inserting the proper integration
boundaries yields the additional normal velocity
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qn (XE)rE {_rl

x'r + 2r'x
Ny (s) ~ 2 | k+1

) w2 + ... (0.17)

1
c
E
For very large xp, we can also neglect the second term within the brackets.

R or' 1
AVN(S) S qn(XE) 5 a1l '}—{;3- . (D.18)

The error is thus proportional to the source strength at Xp and inversely
proportional to the distance xp and the exponent k of the attenuation of
the source strength, '

Lad NASA-Langley, 1970 —— 1
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